SUPPLEMENTARY MATERIAL for:

Modelling active cell movement with the Potts model

Nara Guisoni, ¹ Karina I. Mazzitello, ² and Luis Diambra ³

¹INIFTA, Universidad Nacional de La Plata - CONICET

²Instituto de Investigaciones Científicas y Tecnológicas en Electrónica,

Universidad Nacional de Mar del Plata - CONICET

³Centro Regional de Estudios Genómicos,

Universidad Nacional de La Plata - CONICET.

MOVIES LEGENDS

Supp. movie 1: Animated movie of *in-silico* cells in a low density culture medium. The driving force angle Θ is updated according to Eq. (3). Parameters used: $\rho = 0.2$, $\tau = 10$ MCS and $\phi = 0.95$. Simulation carried on a lattice of 256×256 sites during 10000 MCS and snapshots are taken each 10 MCS.

Supp. movie 2: Animated movie of *in-silico* cells in a high density culture medium. The driving force angle Θ is updated according to Eq. (3). Parameters used: $\rho = 0.9$, $\tau = 10$ MCS and $\phi = 0.95$. Simulation carried on a lattice of 256×256 sites during 10000 MCS and snapshots are taken each 10 MCS.

SUPPLEMENTARY FIGURES

Supp. Fig. 1. Cell velocities v_x vs v_y calculated for different values of the time interval Δt (upper panels). Histogram of the cell velocity component v_x computed over the v_y window indicated by red bars (lower panels). Two different values of densities were used: $\rho = 0.2$ (A) and $\rho = 0.9$ (B). Parameters used: $\tau = 50$ MCS and $\phi = 0.95$.

Supp. Fig. 2. Cell velocities v_x vs v_y calculated for different values of the time interval Δt (upper panels). Histogram of the cell velocity component v_x computed over the v_y window indicated by red bars (lower panels). Parameters used: $\rho = 0.2$, $\tau = 1$ MCS and $\phi = 0.95$.

Supp. Fig. 3. Cell velocities v_x vs v_y calculated for different values of the time interval Δt (upper panels). Histogram of the cell velocity component v_x computed over the v_y window indicated by red bars (lower panels). Two different values of densities were used: $\rho = 0.2$ (A) and $\rho = 0.9$ (B). Parameters used: $\tau = 10$ MCS and $\phi = 0.99$.

Supp. Fig. 4. Semi-log plot of C(t) as obtained by using Eq. (5) for the actualization of the angle of the driving force Θ , and averaged over all cells in the simulation. The plots correspond to three different values of τ , two values of ϕ (0.95 solid lines and 0.99 dashed lines) and for two different densities: $\rho = 0.2$ (A) and $\rho = 0.9$ (B). Panels (C) and (D) show the collapse of the curves by rescaling the horizontal axes by τ , for the simulations at low and high density, respectively. $\Delta\Theta = \pi/3$.

Supp. Fig. 5. C(r) as obtained by using Eq. (5) for the actualization of the angle of the driving force Θ , for $\rho = 0.2$ and 0.9 (continuous and dashed lines, respectively), and different values of τ , as indicated. The vertical dashed line represents the average cell diameter equal to 16 μm as discussed in Section II B. Data were obtained by averaging between 0 and 4000 MCS and over 50 and 10 samples, for $\rho = 0.2$ and 0.9, respectively. Parameters used: $\phi = 0.95$ and $\Delta\Theta = \pi/3$.