
Supplementary Material:

1 NOISE IN THE WEIGHT UPDATE RULES

We noticed that once the parameters τa and τθ are chosen, there an interesting feature arises. The
proposed weight update rules depend on difference between instant and average firing rates for all types of
connections. If we look at instant a(t) and average θ(t) firing activities of a neuron in the input layer under
constant firing probability, we expect to see zero difference (a(t)− θ(t)). According to Poisson temporal
distribution of spikes the difference of firing rates (a(t)− θ(t)) is non-zero. Moreover, its expected value
converges to zero only for a long period of simulation that is more than ∼ 3τθ. The distribution of this
residuals is Gaussian (Fig.S1), so we interpret this effect as the Gaussian noise inside the synapses during
training. The parameters of this probability density function are determined by the time constants τa and, to
a lesser extent, τθ. Generally, the larger τa, the smaller the standard deviation. We believe that this Gaussian
noise of Poisson nature helps SNN to avoid the local minima of its loss function during training, but we did
not aim to investigate this question thoroughly in this work. It should be the subject of the future research.

Figure S1: The stationary distribution of a time-series of the difference between instant and average
activities of a neuron at a constant firing Poisson probability (300 Hz rate). It can be considered as a
Gaussian noise with the zero mean in synapses during training. The Gaussian curve (orange) with zero
mean and σ = 0.7 is fitted to the distribution of (a− θ).

2 CONVERGENCE OF LEARNING BY BCM-LIKE RULES

Different kinds of BCM-like rules, although subject to the maximization activity principle, can have quite
different possibilities for learning algorithm’s convergence. Here, we compare 2 alternatives of BCM kind
rate-dependent rules for the weight update between pre-synaptic neuron i and post-synaptic neuron j:

1

Recurrent Spiking Neural Network Learning Based on 
a Competitive Maximization of Neuronal Activity 



Supplementary Material

dwij
dt
∝ δ(t− tj)(ai − θi), (S1)

dwij
dt
∝ δ(t− ti)(aj − θj). (S2)

For the sake of simplicity, we do not consider the term −wij/τ , describing the rather slow relaxation of
weight to 0. With this disclaimer, (S1) corresponds to the formula (6) of the main text, and (S2) reflects
the original BCM rule, accurate to qualitatively inessential for the simulation factor aj (see below). It
should be noted that the term δ(t− ti) (δ(t− tj)) means the weight update by the spikes of pre-synaptic
(post-synaptic) neuron, and thus is almost equivalent to the rate-coded activity ai (aj), when considering
equation (S1) ((S2)) in the continuous time. The designations in (S1) - (S2) are the same as in the main text
of the article.

Let see how the training of a neuron occurs when applying (S1) or (S2) rules. Assume that a neuron is
specialized for recognizing the digit “7” (own class). Then it reacts also on the visually similar class “1”
(but weaker than to “7”) and almost does not respond to the class “0”. Therefore, we expect the following
weight updates of connections with high rate-coded and low rate-coded pixels (pre-synaptic neurons),
shown in Table S1. Low activity pixels represent not only background completely dark pixels but also the
ones with low intensity surrounding the contour of an image sample. The sign ‘� 0’ means an intensive
positive weight update, the ‘>≈ 0’ implies a positive update close to zero, ‘> 0’ indicates a moderate
weight change compared to the intensive and the weak ones, and so on.

Table S1. The weight updates mediated by two BCM-like rules. The designations are described in the text of this section.

It can be seen that the rule (S1) used in this work demonstrates the learning to highly contrast images
of the own class: it strengthens the weights to the high activity pixels and weakens connections to low
intensity contour pixels of an image. However, this rule tries to learn also the images of the interim and, to
a less extent, of not own classes. That is why it can be called a ”greedy” high contrast algorithm.

2



Supplementary Material

The BCM rule (S2) has a rather different behavior. It learns the images of its own class jointly with
low intensity contour and background pixels. At the same time, it does not pretend to other’s property.
Nevertheless, it can try to capture the interim class images. So, this rule leads to not greedy but low contrast
learning.

Numerical experiments have shown that the high contrast is more important than the greed of an algorithm.
First, (S2) rule captures the low intensity pixels around the images of its own class. Then it begin to respond
more than in average to the interim class images and captures them too. After that, not own class goes to
the category of interim classes, and the situation is repeated. Thus, the BCM-like learning by the rule (S2)
is shown experimentally to be actually more greedy algorithm. Multiplying (S2) to the factor aj , as in the
original BCM rule, only aggravates the situation, because it weakens reaction of attenuation the weights
with not own class images. Applying (S2) instead of (S1) rule, almost in any cases and at any values of
hyper-parameters, leads to formation of a neuron group that captures all or almost all image classes (Fig.
S2).

Figure S2: Typical visualizations of the weights of neurons capturing almost all image classes during
learning by the rule (S2).

This is not the case for the training rule (S1). Despite the greed of this rule, the high contrast learning
and equitable competition between neurons in the hidden layer leads to a clear separation of images into
classes, so that a weak response to the images of not own or even interim classes does not change the
current configuration of the weights.

Frontiers 3



Supplementary Material

3 CURRENT BALANCING

As it was mentioned in the main text, there is a possibility to fail the convergence of learning, with
inappropriate hyper-parameter values setting. In some situations a subgroup of hidden neurons forms
a strong family because of their cooperation and suppresses activity of all the other neurons. It mainly
depends on the training rules’ parameters, especially on the parameters responsible for the balancing of
different types of currents: feed-forward, reciprocal and inhibitory. For a particular neuron the total current
is computed as follows:

Itotal = wffIff + winhIinh + wrecIrec (S3)

Most of the time in hyper-parameter adjusting was spent on the balancing of the coefficients wff , winh,
wrec to ensure the equitable competition between neuron groups. As a result of a grid-search procedure,
the values of wff = 0.3, winh = 1.7, wrec = 2.5 were found to be near optimal for the current balancing.
With this set of parameters, the contribution of the forward current to the Itotal is 50%, 35% for inhibitory
and 15% for reciprocal currents on average. Video with a visualization of weight updates during training is
available online 1. The simple product of two weight matrices 784× 100 and 100× 10 is presented on each
frame of the video. The first one demonstrates evolution of the network weights during 5000 ms (250 input
images) with current balancing coefficients values mentioned above. In the second video, the network was
trained during 50000 ms (2500 input images). It demonstrates the effect of unequal competition (wff = 0.3,
winh = 2.5, wrec = 0) that results in formation of the weak neuron groups responsible for the digits ”4”,
”5” and ”9”.

4 FULL WEIGHT VECTOR NEURON CLUSTERING ALGORITHM

Clustering shown in Fig.7 of the main text had been done using only lateral inhibitory weights of the
hidden neurons. It is interesting to see if there will be some improvement of clustering neurons using
additional information about all other weights of a hidden neuron (its 784 input connections, 100 lateral
weights (self-connection is assumed to be 0), and 10 output feed-forward connections to the classifying
layer). It was done for the preprocessed full vectors of weights for hidden layer neurons by k-means
algorithm with 10 clusters. Preprocessing was the dimensionality reduction from 894-dimensional weight
vector to 10 top dimensions by the Principal Component Analysis (PCA) algorithm.

It can be seen that there is a good coincidence of this cluster presentation in Fig.S3 to the clusters resolved
at the minimum level of competition (the cut-off weight value equals to –0.2), which are presented at the
right-hand side of the Fig.7 of the main text. Moreover, the analysis of the subtle differences (e.g., the 6th,
9th and 10th neurons in the last row of both clustering square diagrams) shows (compare classes of these
neurons according to both clustering diagrams with their receptive field images in Fig.6 of the main text)
that the first simple way of clustering (using only lateral weights) is more appropriate than the complex
mathematical k-means-followed-by-PCA algorithm.

1 https://www.youtube.com/channel/UCHB2xeQ6zzlXyW9ImMnFo1g

4



Supplementary Material

Figure S3: The clusters of hidden layer neurons obtained by the application of k-means-followed-by-PCA
algorithm to the full weight vectors of neurons and corresponding to the different classes of digits marked
by colors (cf. the legend).

Frontiers 5


	Noise in the weight update rules
	Convergence of learning by BCM-like rules
	Current balancing
	Full weight vector neuron clustering algorithm

