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ABSTRACT: This supplementary information document contains additional experimental 

details, results, discussions, and conclusions referenced from the main paper “Accuracy 

improvement of in-line near infrared spectroscopic moisture monitoring in a fluid bed drying 

process”. Some elements of the present document have incompatible formats, and thus, are 

provided as separate files: Video 1.avi (Video S-1; a video clip); Image 1.pdf (Figure S-3; a 

large-size figure); Image 2.pdf (Fig. S-8; a large-size figure); their captions are given in the text 

of the present supplementary information file. 
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S1. Additional experimental details 

S1.1. Granulation and drying 

Fluidized bed drying process studied here followed the high-shear granulation of a 

pharmaceutical powder mixture. At the granulation stage 14 kg of microcrystalline cellulose 

PH102 (FMC Europe BV, Brussels, Belgium), 675 g of povidone, and 150 g of crosspovidone 

were granulated in a high shear mixer (Gral 75, GEA Pharma Systems nv – Collette, 

Wommelgem, Belgium) for 5 min (impeller speed 1, chopper speed 0). Aqueous solution 

(5.75 kg) of a non-disclosed active pharmaceutical ingredient (API) in demineralized water was 

used as a binder and added during the first minute of the granulation. After process completion, 

the wet granulate was transferred to a fluidized bed dryer T/GS2-K2-F1 (GEA Aeromatic 

Fielder, Bubendorf, Switzerland) via a vacuum transport. Before being charged, the fluidized 

bed was preheated to 50°C with an inlet air flow of 300 m3/h. During the drying the air flow was 

kept constant for each process phase, whereas the inlet temperature control was used to adjust 

a desired product temperature.  

Data from 25 designed drying batches was collected over 15 experimental days. Process 

parameters were systematically varied to train the model working in a wide range of possible 

production conditions. Drying air temperature was changing between 90°C and 40°C. At the 

initial process phase of the most active drying it was set to 90° and then manually reduced. The 

air flow rate was varied between 250 and 300 m3/h. Actual inlet, outlet, and product 

temperatures as well as relative humidity of the inlet and outlet air were continuously monitored 

during the drying process. Four API assay values were applied. The main process and sample 

information is summarized in Table S-1. Calibration/validation subsets were defined to be 

representative of the whole process parameters, but the marginal values (bold numbers in 

Table S-1) were avoided in the validation samples.  
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Table S-1. Process data description. 

IDa Dayb nSpc nSd nOe Setf API,  
mg 

STg,  
s 

ETh,  
s nCi 

%LOD Prod. t °Cj 
min max min max 

B01 1 841 11 0 val 0.1 701 4899 0 4.23 21.41 31.6 38.3 

B02 2 831 11 0 cal 0.1 392 4579 1 3.82 25.92 30.5 38.2 

B03 2 1213 20 0 cal 0.1 571 6692 2 2.73 22.38 31.2 45.3 

B04 3 640 7 0 val 0.1 526 3751 1 5.95 21.49 31.6 38.2 

B05 3 589 6 0 cal 0.1 1921 4934 1 5.09 16.29 31.7 38.3 

B06 3 537 7 0 cal 0.1 1026 3738 1 6.34 22.38 30.7 38.1 

B07 4 842 10 0 cal 0.1 996 5231 1 2.70 13.05 32.7 45.0 

B08 4 552 8 0 cal 0.1 952 3704 0 5.57 22.38 30.8 37.7 

B09 5 498 6 0 cal 1.0 1855 4338 0 5.82 23.05 32.1 38.2 

B10 5 642 12 6 cal 1.0 1130 4331 0 4.89 22.72 32.5 38.4 

B11 6 641 8 3 cal 1.0 1682 4998 2 4.36 16.25 32.7 38.2 

B12 7 835 18 9 val 1.0 875 5175 2 3.81 16.88 32.1 38.3 

B13 7 638 9 3 cal 1.0 560 3903 1 5.12 20.37 32.1 38.2 

B14 8 591 14 6 cal 1.0 5805 8847 1 3.03 14.54 31.1 38.2 

B15 9 537 6 2 cal 1.0 1517 4195 0 5.59 14.97 31.5 38.3 

B16 10 548 6 2 val 1.0 100 2836 0 5.59 11.57 32.6 38.5 

B17 11 403 9 4 cal 10.0 1271 3351 1 5.76 16.68 30.7 37.1 

B18 12 524 5 2 val 10.0 879 3495 0 5.76 11.11 33.9 38.3 

B19 12 492 10 4 cal 10.0 3382 5834 0 4.81 17.43 32.2 38.3 

B20 13 497 9 4 val 10.0 2109 4591 0 3.80 9.92 34.1 37.9 

B21 13 667 17 9 val 10.0 663 3995 0 4.26 19.07 32.6 38.3 

B22 13 610 24 15 val 10.0 493 3539 0 4.23 20.97 32.6 38.6 

B23 14 1098 26 8 cal 10.0 179 5931 4 2.44 21.06 32.8 49.7 

B24 14 641 24 13 cal 10.0 148 3459 1 2.38 15.01 33.7 49.7 

B25 15 396 18 11 cal 0 0 1975 0 4.25 11.02 31.7 36.9 

Totalk 15 16303 301 101 88l 0-10 - - 19 2.38 25.92 30.7 49.7 
a Batch ID; b experimental day; c the number of spectra; d the number of reference samples; e the number of samples 
analyzed off-line; f belonging to calibration or validation set; g measurement start time with regard to the process time; 
h measurement end time with regard to the process time; I the number of probe cleaning cycles; j product temperature; 
k summary for the whole data set: the total numbers, intervals or maximal/minimal values; l the number of samples in 
the validation set. 
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S1.2. Sampling and moisture analysis 

Samples were isolated from the fluidized bed using a built-in manual sampler. The moisture 

content was determined with a halogen drying balance HR73 (Mettler Toledo GmbH, 

Griefensee, Switzerland) as the weight percent loss on drying (LOD). About 5 g of each sample 

was taken for the LOD analysis. The halogen balance temperature was set to 105°C and the 

drying rate of 1 mg/50 s was chosen as a switch-off criterion. Reproducibility of three analyzers 

used for the measurements were characterized by the mean and standard deviation LOD 

values calculated from eight independent process samples (about 5 g each). The results are 

presented in Table S-2. 

Table S-2. Reproducibility of drying balance analyzers. 

Noa 
Analyzer 1b 

114555c 
1118492515d 

Analyzer 2 
119570 

1117373354 

Analyzer 3 
110731 

1117473999 
1 3.77e 3.87 3.96 
2 3.83 3.93 3.93 
3 3.85 3.93 3.98 
4 3.82 3.97 3.94 
5 3.85 3.90 3.95 
6 3.92 3.95 3.97 
7 3.91 3.86 3.99 
8 3.86 3.80 3.92 

Meanf 3.85 3.90 3.96 
STDg 0.05 0.06 0.02 

a Sample (measurement) ordinal number; b thermogravimetric drying balance device number; c producer’s SAP 
number; d producer’s SNR identification number; e per cent mass loss on drying (LOD); f mean LOD value for an 
analyzer; g standard deviation of LOD value for an analyzer. 

S1.3. In-line NIR spectroscopic measurements 

In-line spectra were acquired with TIDAS 1121 SSG NIR spectrophotometer (J&M Analytik AG, 

Essingen, Germany) having a 256-pixel diode-array detector with the working range of 1091.8–

2106.5 nm. Process spectra were collected every 5 s with the integration time of 70 ms at 20 

accumulations (the total acquisition time of 1.4 s) through a Lighthouse ProbeTM (LHP) by GEA 

Pharma Systems nv – Collette (Wommelgem, Belgium) [M. Engler, A. Bogomolov, J. 

Mannhardt, Die Lighthouse-Probe, eine neuartige Sonde für die Prozessanalytik, Chemie 

Ingenieur Technik - CHEM-ING-TECH. 01/2009; 81(8):1114–1115]. The probe was mounted 

into the dryer at about the same height as the manual sampler. LHP was supplied with an 

automated cleaning system enabling full cleaning of probe’s measurement head without 
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process interruption (section S1.4). In this study the probe cleaning was performed irregularly 

for selected batches (Table S-1) and different process stages, to analyze its effect on the 

spectra and models. 

S1.4. LHP construction and operating phases 

Lighthouse ProbeTM (LHP) is an immersion probe with seven radial sapphire windows that 

irradiate and receive back-scattered light enabling spectral measurements through 360°. The 

captured light is delivered to a remote spectrophotometer through a fiber optical cable. LHP is 

supplied with an automated cleaning system, which enables cleaning of the probe’s 

measurement head without process interruption. The cleaning phase is followed by the probe 

drying and recalibration, i.e. reference spectrum renewal against a built-in standard. The total 

cleaning cycle usually takes 0.5 to 2 min. The probe’s functional principle and its four operating 

phases are presented in detail in Fig. S-1.  

To perform the cleaning the probe’s head is pulled back from the measurement position (Fig. S-

1a) into the cleaning position (Fig. S-1b), where the optical windows are flushed with the water 

or an appropriate cleaning fluid. Tap water was used for cleaning in the present study. The 

wash is followed by drying with an air flow, using the same pair of pipe connectors. Calibration 

step (Fig. S-1c) is performed whether independently or immediately after the cleaning. During 

the calibration, the reference spectrum is replaced by a new one, obtained using a built-in ring 

of standard reflecting material. The old and the new reference spectra are compared to check 

the effectiveness of cleaning. The backmost position of the head (Fig. S-1d) is necessary to 

perform the final cleaning of the entire drying bowl (clean in place or CIP procedure). During CIP 

both pipe connectors are typically used to force the compressed air, thus preventing a 

penetration of fluids into the compartment. The probe was operated by NovaPAC software 

(Expo Technologies LLC, Saint Louis, MO, USA). The same software was used to acquire NIR 

spectra during the process.  
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Fig. S-1. Lighthouse ProbeTM functional principle: a) measurement; b) cleaning and subsequent 

drying; c) cleanness check and re-calibration; and d) clean in place (CIP). 

S1.5. Off-line NIR spectroscopic analysis 

A Bruker MPA Fourier Transform (FT-)NIR spectrophotometer (Bruker Optik GmbH, Ettingen, 

Germany) was used for diffuse reflectance off-line NIR measurements. Spectra in the range of 

12500–3600cm-1 were recorded with the resolution of 8 cm-1 at 32 scans per spectrum using an 

integrating sphere. Approximately 2 g of each sample were measured using a disposable 

injection vial.  

d) 

b) 

c) 

reference 

a)  

cleaning fluid, air 

compressed air 
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For the purpose of comparison, the data analysis was performed on truncated FT-NIR spectra 

covering the region 1092.1–2106.1 nm (9156.7–4748.0 cm-1). The truncation region was limited 

by the points closest to the borders of in-line spectrum range (1091.8–2106.5 nm). 

S1.6. Data analysis software 

The data analysis was performed in Matlab v7.7 (The MathWorks™ Inc., Natick, MA, USA) 

using PLS_Toolbox v.5.x-7.x by Eigenvector Research Inc. (Wenatchee, WA, USA).  

 

S2. Additional results and discussion 

S2.1. Exploratory analysis of individual batches using an animation technique 

The moisture- and hence time-dependent changes in the batch process spectra can be 

effectively visualized using the following animation technique. Images of sequential in-line 

spectra are played back as movie frames; rates about twenty frames per second or higher 

provide a smooth playback. An example of such data movie including both raw and smoothed 

spectra in the batch B02 is provided in Video S-1. 

[see “Video 1.avi” file] 

Video S-1. Animated spectra of batch B02: grey – all spectra; black – current spectrum; red – 

current spectrum in the dataset averaged with a 15-point window (70 s).   

Animated spectral data clearly reveal the same main trends as discussed in the manuscript: 

reduction of the water absorbance band and stochastic spectral variation that is accompanied 

by a gradual intensity fall in the whole wavelength range. These observations were found to be 

characteristic of all studied batches. Smoothing of spectral variables along the time scale, as 

suggested in section 3.1 of the paper, essentially eliminates the random variance from the data 

and reveals a wide-range correlation of the spectral intensity with the moisture content that is 

irrelative to the water absorbance bands. The magnitude of the whole-range moisture effect on 

the spectral intensity is comparable to the reduction of the main water band around 1940 nm. 

Therefore, it should be taken into account for an accurate quantitative modeling. 

B02 spectral data averaged by a moving window with the width of 15 time points, which 

corresponds to the process time interval of 70 s, is presented by a red spectrum in the animated 

process movie. As a result of this time-domain smoothing (no traditional spectrum smoothing is 
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applied in this study!), the process noise is basically removed and both effects of the drying 

(absorbance- and scatter-related variances) become perfectly observed in the animated 

spectral data. 

S2.2. PCA on the augmented spectral data 

Further to the visual inspection of individual process runs, PCA was performed on the united set 

of in-line spectra from all 25 batches augmented with the common wavelength scale. Process 

trajectories revealed by PCA scores and loadings can be helpful to explain spectral data in 

connection with the process parameters and to estimate the effects of different preprocessing 

methods. Due to the augmentation, PCA produces a set of common loadings, whereas the 

resulting de-augmented scores keep their assignment to individual batches (Fig. S-2). PCA was 

performed on the augmented spectral data of all 25 batches, i.e. concatenated with a common 

wavelength scale, thus forming a single matrix with 16303 objects (spectra) and 256 variables. 

Time dependences of the first seven PCA scores for different preprocessing methods are 

presented in Fig. 3 of the paper (batch B10) and Fig. S-3 (for all batches). The respective 

common loadings are shown in Fig. S-4. 

In the raw-data model, the first PC (95.49% of X-variance) is strongly associated with the 

moisture content, and PC2 (4.23%) basically describes the turbulence. This conclusion is based 

on the score shapes (Fig. 3a) and confirmed by the corresponding loadings (Fig. S-4). 

Remarkable shape similarity of the first two loadings (r=0.998) is an illustration of close spectral 

affinity of these two phenomena, as discussed in section 3.1. Beside the maxima at the water 

absorption wavelengths, p1 has a baseline that is uniformly positive in the whole spectral range 

(first plot in Fig. S-3a-c), which confirms the significance of the scatter-driven correlation of 

spectral intensities with the moisture content. Although the noise related to the process 

dynamics is essentially described by PC2 (Fig. 3a and S-3a), it strongly pollutes PC1 and all 

further PCs in the raw-data model. 
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Fig. S-2. Augmented PCA schematic.  

 [see “Image 1.pdf” file] 

Fig. S-3. PCA scores (vertical axis, arbitrary units) t1-t7 (left to right) versus process time 

(horizontal axis; the tick at 2000 s) for all batches (butch numbers are indicated from the left) for 

different data preprocessing methods: (a) none; (b), (c) variable smoothing with a 15- and a 47-

point window, respectively; (d) MSC; (e) SNV; and (f) 1st derivative by Savitzky-Golay. Process 

parameters are shown overlaid: moisture content in reference samples (crosses), drying air 

temperature (black line) product and exhaust air temperatures (light and dark blue lines, 

respectively); exhaust air humidity (violet line) and LHP cleaning start/end points (vertical green 

lines). 

Suggested smoothing method effectively eliminates this noise from the model (Fig. 3a-c and 

Fig. S-3a-c) without any essential changes of the respective loadings (Fig. S-4a-c). In contrast, 
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other preprocessing methods (Fig. S-4d-f and Fig. S-3d-f) dramatically modify the whole factor 

space; they essentially remove random fluctuations from the first two score vectors (this effect is 

smaller for the 1st derivative transformation), but further PCs stay extremely noisy. In all the 

models prefaced by a conventional scatter correction (Fig. S-3d-f) the first two score vectors are 

similar: t1 correlates well with the moisture content with some systematic deviation toward the 

lower values. The bell-shaped t2 that is common for MSC- or SVN-normalized data is 

characteristic of the preprocessing itself [Y.-C. Chen, S. N. Thennadil, Insights into information 

contained in multiplicative scatter correction parameters and the potential for estimating particle 

size from these parameters, Analytica Chimica Acta 746 (2012) 37–46], rather than of the 

process course. 

Smoothed data suits well to explore process trajectories in the PCA factor space (Fig. 3c and S-

3c). Most of the minor features revealed by the scores t2-t7 can be assigned to certain process 

events. Thus, sharp turns in the score linear plots tend to coincide with a process phase change 

or with an LHP cleaning cycle. Those effects can also be found in the scores resulting from the 

raw data or for preprocessing methods other than smoothing (Fig. 3a, d-e and S-3a, d-e). But 

their interpretation is complicated by the noise and some minor features get entirely lost.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f)

 

Fig. S-4. Augmented PCA of in-line spectral data: loading line plots versus wavelength (p1-p7, 

left to right) for different data preprocessing methods: (a) none; (b) and (c) variable smoothing 

with a 15- and a 47-point window: S15 and S47, respectively; (d) MSC; (e) SNV; and (f) first 

derivative by Savitzky-Golay. All loadings of the same model (p1-p7) have the same y-scales.  

S2.2.1. LHP fouling and cleaning effects 

Refined scores of the studied process batches provide an insight onto the well-known problem 

of probe window fouling that is commonly considered one of the main factors hindering diffuse 

reflectance NIR spectroscopy in accurate moisture monitoring in-line, e.g. [J. Mantanus, E. 

Ziémons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, Ph. Hubert, Moisture 

content determination of pharmaceutical pellets by near infrared spectroscopy: Method 

development and validation, Analytica Chimica Acta 642 (2009) 186–192]. Indeed, at the initial 

process stage, as the granulate is wet and sticky, LHP cleaning actions (Fig. S-3c) result in 

noticeable corrective bends in the multivariate trajectory. Typically, it affects only minor scores 

t3-t5 (Fig. S-2), but in some cases may reveal itself even in the first PC, e.g. in batch B10 (Fig. 3 
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in the paper). After the cleaning, the moisture-correlated vector t1 in B10 exhibits a noticeable 

raise that is in agreement with some growth in spectral absorbance, as one can expect.   

In spite of some trajectory deviation introduced by the fouling, the probe stays capable of 

following the moisture content. This fact can be explained by good penetration ability of the NIR 

light through the stuck granulate; LHP’s seven optical ports strengthen its detection efficacy. 

Besides, moisture content in the crust surrounding the probe should follow (with some time 

delay) the process course due to the equilibrium with bulk process material. PCA-trajectories of 

studied batches (Fig. S-3) show that during the “wet” beginning stage of fluidized bed drying the 

probe cleaning is critical for accurate process monitoring. As the granulate reaches the moisture 

content of 10-15%, the cleaning has almost no effect any more. Typically, the crust falls out at 

that stage, while some inevitable probe contamination with dry product dust is negligible.   

S2.2.2. Investigation of X-variances captured by individual PCs 

X-variances captured by individual PCA factors (Table S-3) provide a deeper understanding of 

effects of different preprocessing methods on the data information content and help to deduce 

the optimal number of principal components to be considered in a PCA model.   

Variable smoothing removes a noticeable part of the total data variance. At a 47-point window 

this reduction reaches more than 12%, i.e. 4.26∙10-3 versus 4.85∙10-3 (Table S-3), which can be 

taken as a rough estimate of stochastic variance share in the raw process data.  The averaging 

tends to emphasize the first PC (X-variance adds almost 3% for S47) at the expense of PC2 

and further PCA factors, where the variance reduction is accounted for by the noise elimination 

(Fig. S-3c). The refined scores in the smoothed data based models get higher contrast basically 

keeping their initial shapes (Fig. S-3b,c). Conventional preprocessing methods result in similar 

percent variances of PC1 and PC2, as in the raw and smoothed data cases, but further PCs 

exhibit much higher values, which is in agreement with their higher noise content. 

X-variances captured by individual PCs (Table S-3) undoubtedly indicate six significant factors 

independently on the preprocessing applied, while the PCs eight to ten are negligible. The 

seventh PC represents a boundary case, and its significance should be proved using other 

criteria. Considering spectrum-like loadings (Fig. S-4) and process-related score shapes, 

specifically, in the time-averaged data (Fig. S-3b and c), one can suggest the relevance of all 

seven PCs. Generally low shares of the variance captured by the minor principal components 

PC2-PC7 (Table 2) illustrate much higher sensitivity of NIR spectroscopy to the water than to 

other chemical or physical variability sources in the drying process medium. 



S-13 
 

In order to estimate the practical significance of spectral information captured by the model 

factors, variable standard deviations corresponding to individual PCs (instead of their variances) 

can be used. Their values are helpful to justify the chosen model complexity. Being expressed 

in spectral intensity units, the standard deviation is directly comparable to the measurement 

precision (if the respective models are based on absorbance spectra, raw or smoothed). Thus, 

the maximum standard deviation among the variables in the reproduced data portion captured 

by PC7 (t7*p7
T) is above 0.001 (both in the raw- and smoothed data), which is certainly above 

the measurement precision of the used spectrophotometer type.  

Table S-3. X-variances in augmented PCA models for different data preprocessing methods.  

Method V0
a V1

b V2 V3 V4 V5 V6 V7 V8 V9 V10 

none 4.85e-03 95.488 4.234 0.168 0.074 0.020 0.008 0.003 0.002 0.001 0.000 

S15c 4.30e-03 97.887 1.862 0.142 0.075 0.017 0.009 0.003 0.002 0.001 0.001 

S47c 4.26e-03 98.086 1.676 0.133 0.072 0.015 0.009 0.003 0.002 0.001 0.001 
MSC 4.37e-04 98.557 0.966 0.238 0.137 0.033 0.020 0.012 0.009 0.005 0.003 

SNV 3.28e-02 97.877 1.534 0.245 0.208 0.041 0.034 0.018 0.010 0.006 0.004 
1D2.15d 3.24e-06 97.702 1.390 0.542 0.150 0.075 0.036 0.034 0.020 0.015 0.009 
a The total data variance (sum of squares of the mean-centered data); b V1, V2,… V10 – percent variance captured by 
individual PCs from one to ten; c S15 and S47 – variable-wise smoothing with 15- and 47-point window, respectively; 
d Savitzky-Golay first derivative with 2nd order polynomial and 15-point smoothing window.  

The PCA analysis performed here provided multivariate proofs of the observations made by 

visual data inspection (Fig. 1, 3 and Video S-1). Scatter-related variance affecting all spectral 

variables contains, in addition to a stochastic intensity variation, an essential correlation to the 

moisture content. Data variable smoothing with an averaging window moving along the time 

domain effectively eliminates the noise, at that, preserving this correlation and improving the 

interpretability of process trajectories in the refined factor space. However, due to their spectral 

similarity, both effects are eliminated by conventional scatter-correction methods operating in 

the spectral domain, e.g. MSC, SNV, and 1st derivative.  

S2.3. PLS regression models of moisture content 

S2.3.1. Outlying samples 

Outlying samples in PLS regression models built on the raw in-line data were detected for each 

moisture modeling range individually using Q2- and T2-Hotelling statistics. Thus, three samples 

(numbers 35, 99, 144) were excluded from the full-data model resulting in a starting dataset (D) 

of 298 samples (Table 1 in the paper). Two of them were the samples with the moisture content 

above 20%, and they fell out when the range was reduced. The sample 35 was repeatedly 

detected as outlying in data sets D20 and D15. In D10 it fell out of the range, but another one 
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(number 36) was eliminated instead. In total, four samples were rejected in different models. 

Therefore, general data quality was very high, and although the elimination of individual outliers 

slightly refined the models, it was not a critical step in terms of practical performance of the 

prediction models.  

S2.3.2. Smoothing degree optimization 

Time-wise smoothing degree has a significant effect on the modeling accuracy. To optimize it, 

PLS regression models were built for the windows including 1 (no averaging) to 101 time points 

(odd numbers only). The optimization was individually performed in different moisture ranges 

(Fig. S-5): full (D), below 20% (D20), below 15% (D15), and below 10% (D10). In spite of some 

differences of the global window width (WW), optima observed in the validation RMSE and R2 

dependencies (Fig. S-5a and b, respectively), which also depend on the moisture modeling 

range, there are two important smoothing degrees reflecting the most common trends.  
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Fig. S-5. Dependences of (a) RMSE of LOO CV and (b) R2 on the smoothing window width 

(WW)  in different moisture content ranges: full (blue), below 20% (green), below 15% (red), and 

below 10% (light blue); vertical lines indicate important WW values of 15 and 47 points. 

The first most essential improvement, compared to the raw data, is already achieved at three to 

five averaging time points, as corresponds to the process time interval of 15-20 s. Further 

increase of the averaging degree slowly improves the performance, giving a local R2 maximum 

around WW=15. Although the optima of averaging degree are individual for each data set, 

WW=15 always gives an essential improvement at minimal data transformation, and thus, can 
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be adopted as a universal preprocessing method in this study. The respective time interval of 

70 s approximately corresponds to the full circulation time of the process material in this type of 

dryer, Thus, each portion of the granulate has a good chance of being exposed to the 

spectroscopic measurement presented by the average spectrum. After that point the 

dependences in Fig. S-5 reach different global optima in different moisture content regions, 

typically, with a very modest gain in model performances compared to WW=15. An exception is 

D10, where the model validation error with seven LVs keeps falling afterwards. The window of 47 

points exhibits the most pronounced global R2 maximum for D15 dataset giving low prediction 

errors in other datasets, as well. Therefore, smoothing with averaging windows of 15 (S15) and 

47 (S47) points have been chosen as benchmarks for the model comparison. 

S2.3.3. Deducing the optimal number of LVs 

Explained y-variances in D15 models (Table S-4) reach saturation around 99.8% with 

approximately seven LVs. Although the X-variance exhibits a steeper raise, with the main 

spectral variance (over 99%) in the first two LVs, it also reaches a plateau after the seventh LV. 

This is consistent with the former conclusion that seven factors are necessary to describe 

relevant X-variance in the PCA model of bulk process spectra (section S2.2.2).  

Table S-4. Cumulative X- and y-variance captured by different numbers of LVs in PLS 

regression models.  

nLVa 
D15 (raw) b D15 (S15) D15 (S47) D15 (MSC) 

Vxc Vy Vx Vy Vx Vy Vx Vy 

1 92.814 75.478 96.894 92.135 97.455 93.378 98.064 95.505 

2 99.561 97.446 99.469 98.063 99.493 98.263 99.075 98.371 
3 99.858 99.047 99.828 99.424 99.831 99.577 99.625 99.195 

4 99.941 99.366 99.931 99.543 99.937 99.643 99.732 99.482 

5 99.976 99.507 99.971 99.622 99.972 99.699 99.872 99.609 

6 99.984 99.709 99.981 99.751 99.981 99.786 99.914 99.660 

7 99.989 99.781 99.987 99.798 99.986 99.817 99.944 99.710 

8 99.990 99.805 99.992 99.813 99.992 99.827 99.949 99.800 
9 99.994 99.817 99.994 99.833 99.994 99.843 99.956 99.825 

10 99.996 99.842 99.995 99.860 99.995 99.864 99.959 99.850 

Totald 1.62e-3 1.05e+1 1.15e-3 1.05e+1 1.12e-3 1.05e+1 1.62e-4 1.05e+1 
a The number of LV in a PLS regression model; b D15 – data subset of samples with moisture content <15% (Table 1 
in the main paper) with applied preprocessing given in brackets (see footnote to Table S-3); c cumulative per cent X- 
(Vx) and y- (Vy) variances in the calibration dataset; d total X- and y-variances in the calibration dataset. 
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Fig. S-6. PLS regression loading linear plots versus wavelength (p1-p7, left to right) for different 

data preprocessing methods: (a) none; (b) and (c) variable smoothing with a 15- and a 47- point 

window: S15 and S47, respectively; (d) MSC; (e) SNV; and (f) first derivative by Savitzky-Golay. 

All loadings of the same model (p1-p7) have the same y-scales.  

For the raw and averaged spectral data (i.e. retaining their measurement units) significances of 

individual PLS LVs have been additionally proved using the approach suggested in section 

S2.2.2. It has been shown that X-variable standard deviations corresponding to individual PLS 

factors keep values above the spectrometer noise (0.0005 absorbance units) up to the seventh 

LV, at least. Similar analysis performed on the y-vector also justified the significance of the first 

seven PLS factors. For instance, standard deviation of the moisture content captured by LV7 in 

D is 0.084; this is comparable to experimentally determined reproducibility error of the LOD 

analysis (Table S-1 in section S1.2). Therefore, although percent values of X- and y-variances 

captured by minor PLS factors (specifically by LV7) in presented models may seem extremely 

low (Table S-4), they are still in agreement with the measurement precisions of respective 

analytical techniques. This traceability to the source data, enabling a direct significance 
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justification of individual LVs in a multivariate model, is an additional advantage of avoidance of 

the conventional scatter-correction prior to the multivariate modeling. The differences in 

validation RMSE and explained y-variances for six and seven LVs are getting smaller with the 

averaging degree (Fig. 4b and Table S-4). Considering these results, seven LVs were found to 

be the optimal model complexity for different moisture ranges and data preprocessing methods. 

This number is also reasonable considering process physical and chemical variability as well as 

complex nature, and hence possible non-linearity of spectral responses. Meaningful PLS 

loadings in Fig. S-6 provide an additional argument for a PLS regression models with seven 

LVs. Note that PLS (Fig. S-6) and augmented PCA loadings (Fig. S-4) are almost identical; 

therefore, both multivariate modeling spaces are essentially the same and conclusions about 

the model complexity for PCA made in section 2.2.2 are basically valid in the PLS model case. 

Close examination of the model complexity issue performed here was necessary, because the 

majority of previously published PLS regression models of the moisture content in a fluidized 

bed drying monitored by the in-line NIR spectroscopy typically used 2-5 LVs [G.X. Zhou, Z. Ge, 

J. Dorwart, B. Izzo, J. Kukura, G. Bicker, J. Wyvratt, Determination and differentiation of surface 

and bound water in drying substances by near infrared spectroscopy, Journal of Pharmaceutical 

Sciences 92 (2003) 1058–1065; R.L. Green, G. Thurau, N.C. Pixley, A. Mateos, R.A. Reed, J.P. 

Higgins, In-line monitoring of moisture content in fluid bed dryers using near-IR spectroscopy 

with consideration of sampling effects on method accuracy, Analytical Chemistry 77 (2005) 

4515–4522; J. Mantanus, E. Ziémons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard, 

Ph. Hubert, Moisture content determination of pharmaceutical pellets by near infrared 

spectroscopy: Method development and validation, Analytica Chimica Acta 642 (2009) 186–

192; M. Alcala, M. Blanco, M. Bautista, J. M. González, On-Line monitoring of a granulation 

process by NIR spectroscopy, Journal of Pharmaceutical Sciences, 99 (2010) 336–345; A. 

Burggraeve, A. F. T. Silva, T. van den Kerkhof, M. Hellings, C. Vervaet, J. P. Remon, Y. van der 

Heyden, T. De Beer, Development of a fluid bed granulation process control strategy based on 

real-time process and product measurements, Talanta 100 (2012) 293–302]. Lower model 

complexity, however, must have been a consequence of insufficient volume or 

representativeness of the calibration data set. Indeed, limiting our data to subsets, e.g. with the 

same API, reduces the model optimal dimensionality. Thus, for single batches or for a 

combination of similar process runs it falls down to 2-4 LVs (Table S-5). Model simplification in 

partial datasets is conditioned, on one hand, by the reduced process diversity, and hence 

spectral variability. On the other hand, the number of samples may be deficient for building a 

full-featured model of higher dimensionality. In the latter case, scatter-correction methods 

strengthening the first PLS factors become advantageous.  
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Table S-5. PLS modeling statistics for reduced datasets (nLV, RMSE and R2 are estimated by 

LOO CV). 

Dataset nSa 
Raw data MSC 

nLV RMSE R2 nLV RMSE R2 
B03 20 4 0.169 0.9992 4 0.336 0.9968 
B22 24 3 0.172 0.9987 2 0.287 0.9965 
B23 26 3 0.154 0.9979 2 0.181 0.9967 
B24 24 3 0.141 0.9981 2 0.225 0.9953 

B01-B08b 80 4 0.380 0.9961 2 0.568 0.9913 
B09-B16c 80 4 0.208 0.9980 3 0.287 0.9961 
B17-B24d 123 3 0.171 0.9983 5 0.210 0.9975 

a The number of samples in the subset; b 0.1 mg API assay; c 1.0 mg API assay; and d 10 mg API assay. For batch 
description see Table S-1. 

S2.3.4. Predicted process trajectories 

Predicted time dependencies of the moisture content for B12 are presented in Fig. S-7. 

Comparing them, it is possible to make additional conclusions about the efficiency of different 

preprocessing methods for the process monitoring performance. Time-domain smoothing is 

much more efficient to reduce the noise spoiling the trajectories at the process beginning, where 

the moisture content is above 15%. At this process stage the material is sticky and may foul the 

probe. First derivative is the least effective method to for the noise reduction. SNV and to a 

lesser extent MSC tend to exaggerate the corrective effect of the probe cleaning on predicted 

moisture content in the surrounding medium, leading to the appearance of positive artifacts. (It 

should be noted that this is an extreme case; in general, the spectral variance related to clean 

and fouled-up probe states is successfully handled by the seven-LV model itself, see Fig. S-8.) 

This susceptibility of the predicted process curve to various interferences is the main reason of 

worse modeling accuracy during the “wet” process stage.  Model accuracies below 15% are 

higher for all preprocessing methods; and their differences of performance can hardly be 

discovered by visual inspection of the process curves. Switching between the process 

technological phases does not have any noticeable effect on the prediction.  
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Fig. S-7. Predicted moisture content versus process time (min) in B12 using full-dataset PLS 

regression model (D in Table 1) and different preprocessing methods: (a) none, (b) and (c) - 

time-domain smoothing with a 15- and 47-point window: S15 and S47, respectively; (d) MSC; 

(e) SNV; and (f) first derivative by Savitzky-Golay. Red circles indicate reference values of LOD 

sample analyses; green intervals designate the probe cleaning cycles, and vertical black lines – 

changes of the process technological phases. 

Overlaid view of process trajectories obtained using three different preprocessing techniques 

(no preprocessing, S15 and MSC) for all 25 batches is presented in Fig. S-8. Direct comparison 

of the methods makes it clear that MSC is the least advantageous preprocessing, particularly 

inaccurate at the process beginning stage.  

 [see “Image 2.pdf” file] 

Fig. S-8. Predicted moisture content versus process time (min) in all 25 batches (the batch 

numbers are indicated at the bottom left corner of each plot) using full-dataset PLS regression 

model (D in Table 1) and different preprocessing methods. The curve color designates the 

preprocessing method used: black – none, red – variable smoothing with a 15-point averaging 

window (S15); blue – MSC; all the models use 7 LVs. Red circles indicate reference values of 

LOD sample analyses; green intervals designate the probe cleaning cycles, and vertical black 

lines – changes of the process technological phases. 
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S2.3.5. Off-line FT-NIR analysis of selected samples 

A subset of 101 selected process samples (Table S-1) were analyzed off-line using a lab FT- 

NIR spectrophotometer (section S1.5) and PLS regression models of the moisture content were 

built. The respective set of in-line spectra of the same samples were used for comparison. The 

results are presented in Table S-6. 

Application of an integrating sphere (IS) prevents the loss of light that is scattered by the 

sample, thus minimizing random effects caused by the granulate surface roughness and density 

fluctuations on the spectral intensity. At the same time, the total path length travelled by the light 

in a sample, and hence its absorption by the granulate constituents, stays dependent on the 

moisture content resulting in a fall of spectrum background in the whole studied range (Fig. S-

9). Similar behavior of off-line NIR spectra was previously studied using pharmaceutical 

excipient (microcrystalline cellulose) and inorganic glass beads (“ballotini”) with a known size 

distribution [J. Rantanen, E. Räsänen, J. Tenhunen, M. Känsäkoski, J.-P. Mannermaa, J. 

Yliruusi, In-line moisture measurement during granulation with a four-wavelength near infrared 

sensor: an evaluation of particle size and binder effects, European Journal of Pharmaceutics 

and Biopharmaceutics 50 (2000) 271–276] and explained by the difference of refractive indices 

on the crystal-air and crystal-water interfaces. Correlation dependence of the spectral intensities 

on the water content at all possible wavelengths (Fig. S-10) exhibits generally high relationship 

of the spectral variables outside the main water absorption regions, as it was observed for the 

in-line data (Fig. 2b in the paper). Exaggeration of the minor spectral features in the correlation 

curve confirms its sensitivity to the light absorption by different mixture components due to their 

indirect correlation with the moisture content that affects the measurement path length. Higher 

contrast of the curve corresponding to off-line data compared to the respective dependence built 

for in-line spectra (black and grey curves in Fig. S-10) is accounted for by higher spectroscopic 

resolution of the FT-NIR method. The observed correlation is generally higher in off-line spectra, 

but data smoothing along the time scale using a 47-point averaging window (red dashed curve 

in Fig. S-10) makes the correlations as high as (and on some wavelength regions even higher 

as) in the off-line data. Higher correlations can be explained by a smaller (about 2 g) off-line 

sample volume compared to the virtual sample exposed to the in-line spectral measurement in 

the reaction bowl that provides practically infinite light penetration depth. The physical 

integrating effect of IS on the spectral measurements that eliminates the random scatter while 

preserving useful moisture-related information is similar to mathematical averaging applied to in-

line data.  
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Table S-6. PLS regression models for in- and off-line NIR spectra of selected process samples. 

Dataset nSa PPb nLV 
Calibration LOO CV 

RMSE R2 RMSE R2 

Doffc 101 

none 6 0.128 0.9987 0.150 0.9982 

MSC 7 0.116 0.9989 0.157 0.9981 

SNV 7 0.120 0.9989 0.156 0.9981 

1D2.15 7 0.094 0.9993 0.127 0.9987 

Doff15d 96 

none 6 0.096 0.9989 0.108 0.9986 

MSC 7 0.089 0.9990 0.108 0.9986 

SNV 7 0.092 0.9990 0.111 0.9985 

1D2.15 5 0.074 0.9993 0.107 0.9986 

Din15e 96 

none 6 0.101 0.9988 0.113 0.9985 

S15 6 0.095 0.9989 0.108 0.9986 

S47 6 0.088 0.9991 0.099 0.9988 

MSC 7 0.084 0.9991 0.119 0.9983 

SNV 7 0.091 0.9990 0.127 0.9980 

1D2.15 6 0.098 0.9989 0.113 0.9985 
a The number of samples in the dataset; b preprocessing method (see footnote to Table S-3); b full dataset for off-line 
analysis; c off-line analysis dataset with moisture content <15%; d in-line analysis dataset with moisture content 
<15%, i.e. the same samples (and their reference moisture values) as in Doff15 and corresponding in-line spectra. 

Limiting the modeling to 96 (out of 101) samples where the moisture content was below 15% 

resulted in a significant improvement of prediction accuracy. RMSE of LOO CV fell from 0.150 in 

D to 0.108 in Doff15 for non-preprocessed data. Therefore, direct comparison of PLS models built 

for off- and in-line spectral data was made on the same reduced sample set (in Table S-6 they 

are designated as Doff15 and Din15, respectively). Here, the FT-NIR laboratory analysis offering 

much higher spectral resolution and optimized measurement conditions can be considered as a 

“gold standard”. Therefore, its direct comparison with an in-line analysis presents a 

methodological value and helps to to evaluate the effects of analysis transfer into a running 

process environment.  
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Fig. S-9. Off-line NIR spectra of 101 selected process samples; moisture content is coded by 

the greyscale colors (black for maximal LOD value in the samples). 

As one could expected, the performance of a PLS model for the raw in-line data Din15 is lower 

than in the case of non-processed laboratory FT-NIR spectra. However, a moderate data 

smoothing (S15) already brings it to the same level as for Doff15, while stronger smoothing (S47) 

leads to a noticeable advantage of the in-line model. This result agrees with a generally higher, 

compared to the off-line spectra, wide-range correlation of smoothed spectral variables in the 

process data (Fig. S-10). Higher resolution of FT-NIR spectra does not play any essential role in 

the quantitative modeling. In both in- and off-line cases the models were built for six LVs. Some 

model simplification compared to the full-data in-line calibration is explained by a reduction of 

the sample set size, and thus, its representativeness, as previously discussed in section S2.3.3.  
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Fig. S-10. Correlation coefficients (r) between the moisture content (LOD) and spectral 

intensities at all individual wavelengths for the set of 101 process samples in: off-line FT-NIR 

spectra (black solid), in the raw in-line (grey) and in the in-line data smoothed (S47) along the 

time scale  (red dashed).   

Scatter correction of the laboratory FT-NIR spectra does not bring any noticeable gain; 

moreover, PLS model prefaced by MSC or SNV require seven LVs to describe the relevant data 

variance (Table S-6). Perhaps, IS application makes this corrective preprocessing redundant. 

 

S3. Extended conclusions 

Beside its utilitarian value, this study contributes to general understanding of diffuse reflectance 

NIR spectroscopy as an in-line analytical method for the moisture monitoring in powder 

processing. The acquired new knowledge that was used to reach a new monitoring accuracy 

level in the studied process, can also serve as a guidance for making informed decisions, e.g. 

on experimental design, data preprocessing choice and modeling strategy, in similar studies.  
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In general, this work illustrates a well-known fact that the maximum performance of analysis is 

reached through an in-depth understanding of the analyzed object (e.g. process) and analytical 

technique. This knowledge can be obtained by thorough exploratory analysis of a designed 

representative set of experimental data.  


