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Supplementary information



Machine‐learning methods
Due to the problem-specific nature of ML algorithms, we explored six different ML methods, including RF, AB, GB, k-NN, SVM, and ERT, which are suitable for binary classification (BCE and non-BCE). All these methods were implemented using the Scikit-Learn package (v0.18) [1]. A brief description of these methods and how they were used are presented in the following sections:

(i) Support vector machine
SVM performs both classification and regression problems [2], and has been successfully applied for protein function characterisation, protein functional site detection, transcription site prediction, and classification of gene expression data [3-8]. SVM transforms the input features into a high-dimensional feature space and determines the optimal separating hyperplane between two classes. A Gaussian radial-basis function (RBF) or Gaussian kernel was used to obtain the classification hyperplane. Two parameters required optimisation: C and γ; C is responsible for the trade-off between training error and margin, while γ defines how peaked Gaussians are centred on the support vectors. We employed a grid search in the range of 2−15 to 210 for C and 2−10 to 210 for γ (in log2-scale) to tune the SVM parameters (Table S1).

(ii) Random forest
RF utilises an ensemble of decision trees to perform classification and regression [9]; it has been successfully applied for various biological problems [10, 11]. This method has been described in detail in previous studies [12, 13]. In RF, the most influential tuning parameters are the number of trees (ntree), the number of variables randomly chosen at each node split (mtry), and the minimum number of samples required to split an internal node (nsplit).

(iii) Extremely randomised trees
ERT is another tree-based ensemble method, which constructs an ensemble of unpruned decision trees in a top-down manner [14]. Although ERT is similar to RF, the cut-points are randomly selected to divide nodes and the decision trees are constructed using the whole training dataset rather than the random subsets of training data. The parameters need to be optimised, similar to RF (Table S1). 

(iv) Gradient boosting 
Friedman, et al. [15] proposed a Gradient Tree Boosting (GB) algorithm, a forward learning ensemble method that performs both classification and regression problems. GB produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees. GB consecutively fits new models to provide a more accurate estimate of the response variables, compared to other ensemble methods such as RF, ERT, and AB. The GB methodology has been described in detail in previous studies [16-19]. In GB, the three most influential parameters, ntree, mtry, and nsplit, require optimisation. 

(v) AdaBoost
AdaBoost, also known as Adaptive Boosting, is an iterative algorithm that aims at achieving a weighted sum of boosted weak classifiers, especially decision trees. Previous studies have described this method in detail [20, 21]. In AB, ntree requires optimisation. 

(vi) k-Nearest neighbour
[bookmark: _GoBack]k-NN is one of the simplest algorithms, and us used for both classification and regression. Here, we used the Euclidean distance to measure the distance function; the parameter k requires optimisation. Therefore, we optimised k using a grid search in the range of 1-300. 
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