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Appendix 1. Time-Frequency analysis and statistics across
subjects

In the main paper, we describe a typical evoked response (ER) analysis, where we simply average
across trials in each condition. However this will attenuate any non-phase-locked, i.e. induced
responses; to detect these, here we describe an alternative time-frequency (TF) analysis that is
performed before averaging.

More specifically, we will use Morlet wavelets to decompose each trial into power and phase across
peristimulus time and frequency, for a single channel of each channel-type (i.e., one EEG electrode,
on magnetometer and one gradiometer). We will then average the power estimate across trials and
create a 2D time-frequency image, which we can then test for reliability across subjects. This
assumes that you have already run the script in the main paper that processes all subjects (in fact,
here we only need the data after downsampling).

A.1.1 Wavelet Estimation

The first module to be added to the pipeline is the “Time-Frequency Analysis” under “SPM — M/EEG
- Time-frequency”. Highlight “File Name”, choose “Specify” box, and select the file
“dspmeeg_sub-15_ ses-meg_task-facerecognition_run-1 _proc-sss_meg.mat”.
This is the continuous (non-epoched) downsampled file from the Downsample section of the main

paper.

To save disk space and computation time, we will not run time-frequency analysis over all channels
(though you could); instead we will select one channel from each sensor-type. So from “Channel
selection”, delete “All” and from the Current Item window press “New: Custom channel” 3 times
and click “Specify” on each one and enter: EEG070, MEG2121, and MEG2543 for an EEG,
Magnetometer and Gradiometer channel respectively. Then highlight the “Frequencies of interest”,
click “Specify” and enter “6:40” (which will estimate frequencies from 6 to 40Hz in steps of 1Hz).
Then highlight “Spectral estimation” and select “Morlet wavelet transform”. Then highlight
“Number of wavelet cycles” and specify this as “5”. The fixed time window length should be set at 0
as default. To reduce the size of the file further, we will also subsample in time by a factor of 5 (i.e.,
every 25ms, given the additional downsampling to 5ms done earlier in preprocessing). Do this by
selecting “subsample” then click “Specify” and enter 5. Finally, select “Yes” for “Save phase”. This
will produce two files, one for power (prefixed with “t¥”) and one for phase (prefixed with “tph”).

A.1.2 Epoch

Similar to the Encoding section in the main paper, we need to epoch the data, but now for two files:
power and phase. Start by adding one “Epoching” module from “SPM->M/EEG->Preprocessing”.
Then use Dependency to select the first output from the time-frequency module, ie for the “power”
dataset. We then need to define which trials to epoch, exactly the same as in the main paper. So
press “Define Trial” and enter [-100 500] for the time window. Then on “Trial definitions”, select
“New:Trial” and enter “Famous” as the “Condition label”, “BIDS” as the “Event type” and “ 'Famous
” as the “Event value” (again note the single quotes around the Event value). Then replicate this trial
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definition twice, and for the second Trial, change the “Condition label” to “Unfamiliar” and “Event



values” to “ ‘Unfamiliar’ ”, and for the third Trial, change the “Condition label” to “Scrambled” and
the “Event values” to “ ‘Scrambled’ ”. For the “Baseline correction” option, select “No”.

You can the right-mouse the “Epoching” module and select “replicate”. This will produce a second
module, with same trial definitions, so you don’t have to repeat steps above. All you need to do is
change the input file dependency from the “power” dataset to the “phase” dataset, and then the
phase data will be epoched in the same manner.

As in the main paper, you can save the batch and script, then create a loop over all the 6 runs. The
resulting batch script should be similar to “batch_tf_wavelet_epoch_job.m” in the
code/manual directory. The output from these steps are two files: “etf_dspmeeg_sub-

15 ses-meg_task-facerecognition_run-%02d_proc-sss_meg.mat” and
“etph_dspmeeg_sub-15 ses-meg_task-facerecognition_run-%02d_proc-
SSs_meg.-mat” for each run.

A.1.3 Merge

This step is the same as in the Merge (Concatenate Runs) section of the main paper, except we need
to add the “Merging” module twice, since the inputs are now both power and phase from the stage
above.

A.1.4 Sort Conditions

As in the main paper, we add a “Prepare” Module to sort the conditions before averaging, and we
can use “Dependency” to use output of Merging in the previous step as the input of this module.
Add this module twice for both power (“t”) and phase (“tph”) files.

A.1.5 Average

We now need to add two “Averaging” modules, one with Dependency on the power file from the
first Prepare step, and the other with Dependency on the phase file from the second Prepare step.
For the power averaging, choose straight averaging and keep the other values as default. For the
phase averaging however, we need to additionally select “Yes” to the “Compute phase-locking
value”. This corresponds to “circular” averaging, because phase is an imaginary number. This
produces a scalar quantity called the phase-locking value (PLV). The prefix will be “m” in both cases.

A.1.6 Baseline rescale

It often helps to express power as proportional changes relative to a baseline period (this also helps
normalise power changes across frequencies, since power at higher frequencies tends to be much
lower than power at lower frequencies). If you only care about the average, then this normalisation
(rescaling) is best done after averaging, because the divisive normalisation of single trials amplifies
noise (Ciuparu & Muresan, 2016). To implement this rescaling, we need to select the “Time-
Frequency Rescale” option from the “Time-Frequency” menu (note: not the “Baseline Correction”
module from the “Preprocessing” menu). There are several options available. For the power, which
is a rectified, second-order measure, it also helps to apply a log transform. We will therefore use the
log-ratio (“LogR”) option, where all power values at a given frequency are divided by the mean
power from -100 to Oms at that frequency, and the log taken (which is equivalent to subtracting the



log of the baseline power). Select the power file output from the previous phase as the dependency,
select the log ratio option, and enter the baseline time window as [-100 0]. The output file prefix will
be “r”. We will not bother to baseline-correct the phase-data.

A.1.7 Contrast conditions

Finally, as in the main paper, we can take contrasts of our trial-averaged data, e.g., to create a time-
frequency image of the difference in power, or in PLV, between faces and scrambled faces. Create
two “SPM —> M/EEG —> Average —> Contrast over epochs” modules, one with the average power
file as input, and one with the averaged phase (PLV) file as input. You can then select “New
Contrast” and enter contrasts like [0.5 0.5 -1] (for faces vs scrambled; see earlier) and [1 -1 0] (for
familiar vs unfamiliar). The resulting output file is prepended with “w”.

As before, if you want to save file-space, you can add further “Delete” modules, since we will not
need many of the intermediate files. The only files we need to keep are the averaged power and
phase files (since these are used to create time-frequency images below) and the contrasted
versions (for visual inspection of effects within each subject).

A.1.8 Create 2D time-frequency images

Below we will repeat the above steps for every subject, and create a statistical parametric map of
power and PLV changes across subjects, in order to localise face-induced power and phase-locking
changes in frequency and time. This requires that we create 2D images, one per condition (per
subject). Select the “convert2images” option and select the baseline-rescaled, trial-averaged power
file as the dependency from the stage above. Select the mode “time x frequency”. Next select
channel selection by type. Here, choose EEG for “Channel selection” and define the prefix as
“eeg_1img_pow”. (Of course, this module can be repeated for MEG and MEGPLANAR sensors if
wanted.)

Save batch and review

You can now save this time-frequency batch file (it should look like the

“batch_tf _merge_contrast_job.m” file in the “code/manual” directory). Once you have
run it, you can then review the contrast files, e.g, for power (“wrmcetf_dspmeeg_sub-

15 ses-meg_task-facerecognition_run-01_proc-sss_meg.mat”) or PLV
(“wrmcetph_dspmeeg_sub-15 ses-meg_task-facerecognition_run-01 proc-
Sss_meg.-mat”). When displaying the files, you will now see only one channel per sensor-type; for
the EEG data, when you select the trial-type corresponding to the contrast of faces versus scrambled
faces, you should see something like Figure A.1.1A for power, and Figure A.1.1B for PLV.
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Figure Al1.1 A) Trial-averaged power for faces > scrambled in EEG channel 70 (right posterior). B) Trial-averaged
PLV for faces > scrambled in EEG channel 70 (right posterior).

Creating a script for analysis across subjects

Now that we have created a pipeline for the time-frequency analysis (consisting of two job files,
each job file containing a handful of modules), we want to run this on all subjects. First you need to
clear all the values of the input files to the batch_tf wavelet epoch_ job.mand
batch_tf merge contrast_job.m, and re-save them as job files (so that we can pass input
files to them that depend on the subject). For this, a bit of MATLAB knowledge is required to call
these pipelines within a “For” (or “parfor”) loop across subjects, e.g:

parfor (s = [1:nsub], numworkers)
if numworkers > 0
spm_jobman("initcfg®);
spm(“defaults®, "EEG");
spm_get_defaults(“cmdline”,true);
end

% Change to subject®s directory
swd = fullfile(outpth,subdir{s), "meg-);
cd(swd);

runs = spm_BIDS(BIDS, "runs®, “sub®,subs{s}, "modality”,"meg”,...
“type®,"meg”);
nrun = numel(runs);

jobs_tf _wavelet = repmat({fullfile(scrpth, "batch_tf _wavelet_epoch_job.m")}, 1, nrun);
jobs_tf merge = {fullfile(scrpth, "batch_tf_merge_contrast_job.m")};

% Wavelets and epoching
inputs = cell(1, nrun);
for r = 1:nrun
inputs{l, r} = cellstr(fullfile(swd, ...
sprintf("dspmeeg_sub-%02d_ses-meg_task-facerecognition_run-%02d_proc-
sss_meg.mat®,s,r)));
end
spm_jobman(“serial®, jobs_tf wavelet,"", inputs{:});

% Merge to contrast

inputs = cell(2, 1);

inputs{1} = cellstr(spm_select("FPList",fullfile(swd), "etf dspmeeg.*\.mat$"));
inputs{2} = cellstr(spm_select("FPList",fullfile(swd), "etph_dspmeeg.*\.mat$"));

spm_jobman(“serial®, jobs_tf _merge, "", inputs{:});
end



A.1.9. Time-frequency Stats across Subjects

We can now enter the frequency-time power images (one per condition per subject) into a group
(2nd-level) analysis that corresponds to repeated-measures ANOVA, like for the source-space SPM
analysis in the main paper.

The first thing is to specify the output directory where the SPM stats files will be saved. Because this
is now an analysis across subjects, we can create a directory above “sub-15" in the directory tree.
So create a new top-level directory called, for example, “MEEG” (because in the main paper we have
group stats source-reconstructed MEEG data too), then a sub-directory within it called “TFStats”,
then two sub-directories called “PowStats” and “PLVStats”, each with a further sub-directory
called “eeg” (and potentially two more called “mag” and “grd” if you want to examine other
sensor-types too).

A.1.10 Model Specification, Estimation and Contrasts

To create this repeated-measures ANOVA, open a new batch and select “Factorial design
specification” under “Stats” on the “SPM” toolbar. Then select this new
“MEEG/TFStats/PowStats/eeg” directory (for the first, power analysis).

Highlight “Design” and from the current item window, select “One-way ANOVA-within subject”.
Highlight “Subjects” and create a “New: subject”. In the “scans” field, you can now select the 3
power images for the first subject (which should have been created in the “sub-
01/meg/eeg_img_pow_rmcetf _dspmeeg_sub-01_ses-meg_task-
facerecognition_run-01_proc-sss_meg” directory if you ran the script above), and enter
the “Conditions” as “[1 2 3]”. It is important for the contrasts below that you select the files in the
order Famous-Unfamiliar-Scrambled. You can then select “Replicate: Subject” under the “Subjects”
item, keeping the “Conditions” unchanged, but changing the “Scans” to those in “sub-
02/meg/eeg_img_pow_rmcetf_dspmeeg_sub-01_ses-meg_task-
facerecognition_run-01_proc-sss_meg”. You can then repeat these steps for the
remaining subjects. Or if you prefer (because this is a pain to do via the GUI!), you can create 16
blank “Subject” items, save the batch script, and then populate the “Scans” field (and Conditions
field) via a MATLAB script. Finally, set the “Variance” to “Unequal” and the “Independence” to “No”
(to model the error correlation, i.e., nonsphericity, mentioned above). Keep all the remaining
defaults.

The next step is to add a module for “Model Estimation” from the “Stats” option and define the file
name as being dependent on the results of the factorial design specification output. Keep the
remaining defaults.

The final step is to add a module for “Creating contrasts”. Define the file name as dependent on the
model estimation. The first contrast will be a generic one that tests whether significant variance is
captured by the first 3 regressors. This corresponds to an F-contrast based on a 3x3 identity matrix.
Highlight contrast sessions and select a new F- contrast session, using the current item module.
Name this contrast “All Effects”. Then define the weights matrix by typing in “eye(3) ones(3,16)/16”



(which is MATLAB for a 3x3 identity matrix, followed by 1/16 for each of the 16 subject effects; the
latter being necessary if one wants to see absolute changes in power vs baseline). You can use this
contrast later to plot the parameter estimates for the 3 conditions.

More interestingly perhaps, we can also define a contrast that compares faces against scrambled
faces, i.e., to test whether the average power increase across trials seen in Channel 70 of Subject 15
in Figure Al.1 is reliable when averaging across channels and across subjects. So this time make a T-
contrast, name this one “Faces (Fam+ Unf) > Scrambled”, and type in the weights “0.5 0.5 -1". (If you
want to look at power decreases, you can create another T-contrast and reverse the sign of these
contrast weights.)

Save batch and review

Once you had added all the contrasts you want, you can save this batch file (it should look like the
“batch_stats rmANOVA_job.m” file in the code/manual directory). Then run it, and when
it has finished, press “Results” from the SPM Menu window. Select the “SPM_mat” file in the
“MEEG/TFStats/eeg” directory, and from the new Contrast Manager window, select the pre-
specified T-contrast “Faces (Fam+Unf) >Scrambled”. Within the “Stats: Results” bar window, when
given the option, select the following: Apply Masking: None, P value adjustment to control: none,
keep the threshold at 0.001, extent threshold {voxels}: 0; Data Type: Time-frequency. The Graphics
window should then show what is in Figure A1.2 below. Note the peak increase in power at 12Hz,
165ms that survives correction for its spatial extent, which most likely corresponds to the N170. We
can use the approximate extent of this cluster to define the time-frequency contrast for the source
reconstruction described in the main text. There is also a second cluster slightly later cluster at much
higher frequencies (~28Hz) which may be largely induced rather than evoked, and not readily
apparent the evoked analysis of the main paper.

You can also repeat the above SPM statistical analysis on the PLV data for each subject. If you do
this for the EEG channel, you should see results like those in Figure A1.3, which show an increase in
phase-locking around a similar time and frequency as the above power changes. This distinction
between stimulus-locked changes in power versus phase is not possible with our previous evoked
response analysis, and suggests that faces cause a change in phase of ongoing (alpha) oscillations, as
well as a modulation of their power.
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Appendix 2. fMRI Preprocessing and Statistics

We will keep description of the preprocessing and analysis of the fMRI data to a minimum, given
that fMRI analysis is not the subject of the present research topic and paper. We start with
preprocessing Subject 15’s data. For the fMRI experiment, there were 9 runs (sessions), rather
than the 6 in the M/EEG experiment. This is because the stimulus onset asynchrony was
increased in the fMRI experiment, by virtue of jittering, which is necessary to estimate the BOLD
response versus interstimulus baseline (e.g., to compare with the evoked EEG/MEG response
versus prestimulus baseline). Preprocessing involves the following modules, which can be
found under the menu “SPM - Spatial”:

A2.1 Coregistration of EPI (fMRI) data

The first step is to coregister the 9 runs of 208 images to one another (i.e., correcting for
movement) using a rigid-body transform. Select “Realign: Estimate & Reslice”, and on the “Data”
item, add nine new “Sessions”. Then, for the first session, select the “*_run-01_bold.nii”
image in the “Func” directory of Subject 15, and then repeat for the remaining eight sessions.
On the “Reslice Options” item, change the default value of “All Images + Mean Image” to “Mean
Image Only”. This is because we do not re-slice the EPI data: the coregistration parameters will
be stored in the header information of the NIFTI file, and can be combined with the
normalisation parameters when re-slicing the normalised images below (re-slicing can
introduce interpolation artifacts so generally best to reduce number of re-slicings). However,
we do need a resliced mean image, which we can use for coregistration with the T1 below. Thus
the contents of the “*_bold.nii” files will change (as header updated), but no new files will
be created, except for the “mean*_nii” file.

A2.2 Segmentation of T1 images

We will use SPM12’s unified segmentation to estimate normalisation parameters to MNI space
(this is generally better that SPM’s old normalisation, though an alternative would be to
normalise the mean EPI image to an EPI template, which, even though lower spatial resolution,
at least contains the same distortions). Select “Segment” item, and for the “Volumes” item, select
the “sub-15_ses-mri_acqg-mprage_T1lw.nii” image in the “anat” directory of Subject
15. You can leave the remaining menu items at their defaults (even though the tissue segment
images are not required in this analysis), but you do need to change the final option
“Deformation Fields” from “None” to “Forward” (these are the normalisation parameters we
will apply to EPI data below).

A2.3 Coregistration of mean EPI (fMRI) to T1 (sMRI)

Because we have determined the normalisation parameters from the subject’s native space to
MNI space via the unified segmentation of their T1 image, we need to coregister all the EPI
images to that T1 image, so that the normalisation warps can be later applied. Select “Coregister:
Estimate” item, and for the “Reference Image”, select the same “sub-15_ses-mri_acq-
mprage_T1w.nii” image in the “anat” directory. For the “Source Image”, select
“Dependency” and then use Ctrl and Shift to select all 9 sessions from the “Realign” stage.
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A2.4 Application of Normalisation parameters to EPI data

We can now apply the normalisation parameters (warps) to each of the EPI volumes, to produce
new, re-sliced “w*” images. Select “Normalise - Write” item, and for the “Deformation Field”, use
select the “Segment: Forward Deformations” dependency. For the “Images to Write”, select the
“Coregister: Estimate: Coregistered Images”. You can also change the default voxel size from [2 2
2] to [3 3 3] since the original data are [3 3 3.9] (for Subject 15).

A2.5 Smoothing

Finally, we smooth the normalised images by an 8mm isotropic Gaussian kernel to produce
“sw*” images. So select the “Smooth” item, and select the input to depend on the output of the
prior Normalisation stage.

Save batch and review

You can save this batch file (it should look like the “batch_preproc_fmri_job.m” file in the
“code/scripted” directory), and then run it. You can inspect the realignment parameters,
normalisations, etc. as described in other chapters of the SPM manual. Make a new directory
called “Stats” in the “Sub15/func” directory.

A2.6 Creating a 1st-level (fMRI) GLM

You first need to create a MATLAB file that contains the onsets, durations and names of every
trial in each run for each subject. This information is stored in a “* . tsv” file of the BIDS format,
and will be used for the “Multiple Conditions” entry below.

% Create SPM"s multiple conditions files

runs = spm_BIDS(BIDS, "runs®, "modality”,"func®, "type®","bold", "task","facerecognition®);
nrun = numel(runs);

trialtypes = {"Famous”®, "Unfamiliar®, "Scrambled"}; % impose order
for s = 1l:nsub
for r = 1:nrun
d = spm_load(char(spm_BIDS(BIDS, “data“, ...
"modality”,"func®, "type®, “events”, "sub”,subs{s}, “run®,runs{r})));
clear conds
for t = 1l:numel(trialtypes)
conds.names{t} = trialtypes{t};
conds.durations{t} = 0;
conds.onsets{t} = d.onset(strcmpi(d.stim_type,trialtypes{t}));
end
save(fullfile(outpth,subdir{s}, “func”, ...
sprintf("sub-%s_run-%s_spmdef.mat®,subs{s},runs{r})), "-struct®,“conds”);
end
end

Select the “fMRI model specification” option from the “SPM - Stats” menu. Select the new
“Stats” directory you created as the output directory. Set the “Units for design” to seconds
(since our onsets files are in units of seconds) and the “interscan interval” (TR) to “2”. Then
under the “Data & Design” option, create a new Session, and then select all the “sw*_run-

01 _bold.nii” images in the “func” directory as the “Scans”. Then under the “Multiple
conditions” option, press “Specify” and select the file “sub-15_run-01_spmdef_mat” that
was created above. Then under the “Multiple regressors” option, press “Specify” and select the
file matching “rp* . txt” in the “func” directory. This is a text file that contains the 6
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movement parameters for each scan, which was created during Realignment above, and we will
add to the GLM to capture residual motion-related artifacts in the data.

For the basis functions, keep “Canonical HRF”, but change the “model derivatives” from “no” to
“time and dispersion derivatives” (see earlier Chapter manuals). Then keep the remaining
options as their defaults.

You then need to replicate this for the remaining 8 sessions, updating all three fields each time:
i.e,, the scans, conditions and (movement) regressors. (It is at this point, that you might want to
switch to scripting, which is much less effort!). Leave the remaining options as their defaults.

A2.7 Model Estimation

Add a module for “Model Estimation” from the Stats bar and define the file name as being
dependent on the results of the factorial design specification output.

A2.8 Setting up contrasts

To create some contrasts, select “Contrast Manager” from the Stats bar. Define the file name as
dependent on the model estimation. The first contrast will be a generic one that tests whether
significant variance is captured by the 3 canonical HRF regressors (one per condition). So create
a new F-contrast, call it the “Canonical HRF effects of interest”, and enter as the weights matrix:

[LOO0O0O0O0O0O0O0O0O0O0O0O0

000100000000000

000000100000000]
Then select “Replicate” to reproduce this across the 9 sessions. We can also define a T-contrast
to identify face-related activation, e.g., “Faces > Scrambled Faces”, given the weight matrix [0.5
000500-100 00000 0], again replicated across sessions. (Note that there are 3 basis
functions per condition, and the zeros here ignore the temporal and dispersion derivatives, but
if you want to include them, you can add them as separate rows and test for any face-related
differences in BOLD response with an F-contrast).

Finally, for the group-level (2nd-level) analyses below, we need an estimate of activation of each
condition separately (versus baseline), averaged across the sessions. So create three new T-
contrasts, whose weights correspond to the three rows of the above F-contrast, i.e., that pick out
the parameter estimate for the canonical HRF for Famous, [100 000 000 00000 0]; for
Unfamiliar [000 100 000 0000 0 0]; and for Scrambled[000 000 100 0000 00].
These T-contrasts will be numbered 3-5, and used in group analysis below.

Save batch and review

You can save this batch file (it should look like the “batch_stats_fmri_job.m” file in the
“code/scripted” directory). When it has run, you can press “Results” from the SPM Menu
window, select the “SPM_mat” file in the “BOLD” directory, and explore some of the contrasts.
However, we will wait for the group analysis below before showing results here.



Creating a script for analysis across subjects

Now that we have created a pipeline for fMRI preprocessing and analysis for a single subject, we

can script it to run on the remaining 15 subjects. Below is an example from the
“master_script.m”

spm_jobman("initcfg™);
spm(“defaults®, “fmri®);

parfor (s = 1:nsub, numworkers)
% Change to subject"s directory
cd(fullfile(outpth,subdir{s}, "func®));

% Preprocessing

jobfile = {fullfile(scrpth, "batch_preproc_fmri_job.m")};

inputs = cell(nrun+2,1);

for r = 1:nrun
inputs{r} = cellstr(spm_select("FPList",fullfile(outpth,subdir{s}, func"),...

sprintf(""sub-.*run-%s_bold\\.nii",runs{r})));

end

inputs{nrun+l1} = cellstr(spm_select("FPList",fullfile(outpth,subdir{s}, "anat"),...
"Asub-.*_TIw\.nii$"));

inputs{nrun+2} = cellstr(spm_select("FPList",fullfile(outpth,subdir{s},“anat™),...
"Asub-_.* TIw\.nii$"));

spm_jobman(“run®, jobfile, inputs{:});

% First-level statistics

jobfile = {fullfile(scrpth, "batch_stats fmri_job.m")};
inputs = {}; %cell(nrun*3+1,1);
inputs{1} = {fullfile(outpth,subdir{s}, "func®,"Stats")};
for r = 1:nrun
inputs{end+1} = cellstr(spm_select("FPList",fullfile(outpth,subdir{s}, “func®),...
sprintf("swsub-.*run-%s_bold\\.nii$",runs{r})));
inputs{end+1} = cellstr(fullfile(outpth,subdir{s}, " func”,...
sprintf("sub-%s_run-%s_spmdef.mat®,subs{s},runs{r})));
inputs{end+1} = cellstr(spm_select("FPList",fullfile(outpth,subdir{s}, “func®),...
sprintf(C"Mrp.*run-%s . \\.txt$" ,runs{r})));
end
spm_jobman(“run®, jobfile, inputs{:});

if ~keepdata

T = cellstr(spm_select("FPList",fullfile(outpth,subdir{s}, “func®), "~sub-.*_bold.*"));

spm_unlink(f{:});
T = cellstr(spm_select("FPList",fullfile(outpth,subdir{s}, “func®), " w.*_bold.*"));
spm_unlink(f{:});
end
end

Once you have run this script, we can do 2nd-level (group) statistics on resulting contrast images

for each condition (averaged across 9 runs).

A2.9 Group Statistics on fMRI data

Now we have a new set of 16x3 NIfTI images for each subject and each condition, we can put
them into the same repeated-measures ANOVA that we used to test for differences in power
across sensors in the time-frequency analysis above, i.e., re-use the
“batch_stats_rmANOVA_job.m” file created above. This can be scripted as:

% fMRI stats across subjects

jobfile = {fullfile(scrpth, "batch_stats rmANOVA_job.m")};
inputs = cell(nsub+l, 1);

inputs{1} = {fullfile(outpth, "func®)};

for s = 1:nsub
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% Assumes that these T-contrasts in fMRI 1st-level models are famous, unfamiliar,
% scrambled (averaged across sessions)
inputs{s+1,1} = cellstr(spm_select("FPList",fullfile(outpth,subdir{s}, "func®, "Stats"), ...
"Acon_000[345]\.nii$"));
end
spm_jobman(“run®, jobfile, inputs{:});

Save batch and review

When the script has run, press “Results” from the SPM Menu window and select the “SPM.mat”
file in the “Func” directory. From the Contrast Manager window, select the pre-specified T-
contrast “Faces (Fam+Unf) > Scrambled”. Within the “Stats: Results” window, when given the
option, select the following: Apply Masking: None, P value adjustment to control: FWE, keep the
threshold at 0.05, extent threshold {voxels}: 30; Data Type: Volumetric 2D/3D. The Graphics
window should then show what is in Figure A2.1 below. Note the left and right occipital face
area (OFA) clusters and right fusiform face area (FFA) cluster.

In the main analysis, we can use these three clusters as priors for constraining the inversion of
our EEG/MEG data. To do this, we need to save these as an image. Press the “save...” button in
the bottom right of the SPM Results window, and select the “all clusters (binary)” option. The
window will now prompt you for an output filename, in which you can type in
“spmT_0002_05cor.nii”. This image will be output in the “func” SPM stats directory, and
will be used in the Group and fMRI Optimized Source Reconstruction section of the main paper.
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Faces (Fam+Unf) > Scrambled

contrast

5 10 15
Design matrix
Statistics: p-values adjusted for search volume
set-level cluster-level peak-level
N k T [z ] mim mim mim
P c pF'NEG{JH qFDRcu{r E punuun pF'NEG{JH qFDRcu{r pun{}u{r
o.o00 3 [ 0.000 120 0000 0. oom 0.005 4.91 6.13 0.00m 42 -52 -1l4
[ 0.000 130 0000 0. oom 0.005 8.65 6.08 0.00m 6 -8 -10
[ 0.014 T 0.008 0.0ol 0.034 T.52 5.60 0.00m -38 -86 -l4

table shows 3 local maxima more than 8.0mm apart
Height threshold: T = 5.80, p = 0,000 (0.050) Degrees of freedom =[1.0, 30.0]

Extent threshold: k = 30 vaxels, p =0.016 (0.001) FWHM = 13012912 6 mmmm mm; 6.5 6.4 63 {voxels}

Expected voxels per cluster, <k= = 4 709 Volume: 1515832 = 189479 voxels = 671 .8 resels
Expected number of clusters, =c= = 0.00

Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 261,76 vaxels)
FWEp: 5.804, FDRp: 7.523, FWEe: 5, FDRe: 37

Figure A2.1. Group SPM for Faces vs Scrambled fMRI data thresholded for clusters with at least 30 voxels
that survive p<.05 FWE-corrected, resulting in a right fusiform face area (FFA) and left and right occipital
face area (OFA).



