
 

 1 

The EnvZ-OmpR Two-Component Signaling System Is Inactivated In 1 

A Mutant Devoid Of Osmoregulated Periplasmic Glucans In Dickeya 2 

dadantii 3 

 4 

 5 

Caby Marine1, Sébastien Bontemps-Gallo1‡, Peggy Gruau1, Brigitte Delrue2, Edwige Madec1, 6 

Jean-Marie Lacroix1* 7 

 8 

 9 
1 Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et 10 
Technologies de Lille, Université de Lille, F-59655 Villeneuve d’Ascq, France 11 
2 Université de Lille, F-59655 Villeneuve d’Ascq, France 12 
 13 
*corresponding author.  14 
E-mail: jean-marie.lacroix@univ-lille.fr. 15 
 16 
‡present address: Center for Infection and Immunity of Lille, U1019-UMR8204, Institut Pasteur de Lille, 17 
Inserm, CNRS, Université de Lille, France. 18 
 19 
Running title: Relationship EnvZ/OmpR & OPG 20 
 21 
Number of Figures: 8 22 
Number of words: 5,145 23 
 24 
Keywords 25 
EnvZ/OmpR, osmoregulated periplasmic glucans, osmotic stress, plant pathogen, D. dadantii 26 

Deleted: ‡present address : Laboratory of Bacteriology, National 27 
Institute of Allergy and Infectious Diseases, National Institute of 28 
Health, Hamilton, MT, United States of America.¶29 

Deleted: 554530 



 

 2 

Abstract 31 

Osmoregulated periplasmic glucans (OPGs) are general constituents of alpha-, beta- and 32 

gamma-Proteobacteria. This polymer of glucose is required for full virulence of many 33 

pathogens including Dickeya dadantii. The phytopathogenic enterobacterium D. dadantii 34 

causes soft-rot disease in a wide range of plants. An OPG-defective mutant is impaired in 35 

environment sensing. We previously demonstrated that i) fluctuation of OPG concentration 36 

controlled the activation level of the RcsCDB system, and ii) RcsCDB, along with EnvZ/OmpR 37 

controlled the mechanism of OPG succinylation. These previous data lead us to explore whether 38 

OPGs are required for other two-component systems. In this study, we demonstrate that 39 

inactivation of the EnvZ/OmpR system in an OPG-defective mutant restores full synthesis of 40 

pectinase but only partial virulence. Unlike for the RcsCDB system, the EnvZ-OmpR system 41 

is not controlled by OPG concentration but requires OPGs for proper activation.  42 
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Introduction 58 

Osmoregulated periplasmic glucans (OPGs), b-D-glucans oligosaccharides, are major 59 

envelope components found in the periplasm of almost all proteobacteria. Their concentration 60 

increases as the osmolarity of the medium decreases (Kennedy, 1996; Bohin and Lacroix, 2006; 61 

Bontemps-Gallo et al., 2017). In enterobacteria, the gene products of the opgGH operon 62 

synthesize the OPG glucose backbone, which is composed of 5-12 glucose units joined by b,1-63 

2 linkages and branched by b,1-6 linkages. opgG and opgH mutant strains are completely 64 

devoid of OPGs (Bontemps-Gallo et al., 2017). These glucans are well described as virulence 65 

factors of animal and plant pathogens including Dickeya dadantii (Bontemps-Gallo and 66 

Lacroix, 2015). 67 

D. dadantii, the agent of soft rot disease, is directly responsible for 5 to 25% of potato 68 

crop loss in Europe and Israel (Toth et al., 2011). This phytopathogen is listed as an A2 69 

quarantine organism by the European and Mediterranean Plant Protection Organization (EPPO, 70 

1982; 1988; 1990). Maceration is the result of the synthesis and secretion of plant cell wall-71 

degrading enzymes (PCWDEs), in particular, pectinases (Collmer and Keen, 1986). However, 72 

additional factors, such as motility, are required for full virulence (Charkowski et al., 2012; 73 

Reverchon and Nasser, 2013; Leonard et al., 2017). During infection, D. dadantii must 74 

overcome several stresses including osmotic stress. Previous studies suggest that bacteria 75 

encounter hypoosmotic stress at the early stage of  infection and hyperosmotic stress later due 76 

to plant maceration (Reverchon and Nasser, 2013; Jiang et al., 2016; Reverchon et al., 2016). 77 

In our model, OPG concentration dramatically increases during the first hour of 78 

infection (Bontemps-Gallo et al., 2013). Mutants devoid of OPGs show a pleiotropic phenotype 79 

including a loss of motility, decreased synthesis and secretion of PCWDEs, increased synthesis 80 

of exopolysaccharide, induction of a general stress response and complete loss of virulence on 81 

potato tubers or chicory leaves (Page et al., 2001; Bouchart et al., 2007). These phenotypes 82 

suggest that strains lacking OPGs are impaired in the sensing of their environment. Previously, 83 

our laboratory demonstrated a strong relationship between OPGs and the RcsCDB two-84 

component system. 85 

Two-component systems are key regulators of gene expression plasticity in response to 86 

environmental changes. Under stimuli, often unknown, a transmembrane sensor histidine 87 

kinase (HK) autophosphorylates on a histidine residue. This phosphate group is subsequently 88 

transferred to an aspartate residue on a cognate cytoplasmic response regulator (RR), which in 89 

turn regulates the expression of a set of target genes (Hoch, 2000; Groisman, 2016). 90 
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Inactivation of the RcsCDB system in an OPG-defective mutant restores several of the 122 

D. dadantii wild-type phenotypes (motility, mucoidy, virulence) (Bouchart et al., 2010), 123 

indicating that OPGs are involved in the perception of environmental changes. We have also 124 

shown that RcsCDB and OPG are tightly connected: i) fluctuation of OPG concentration 125 

controls the activation level of the RcsCDB system (Bontemps-Gallo et al., 2013), ii) RcsCDB, 126 

along with the two-component system EnvZ/OmpR, controls the mechanism of OPG 127 

succinylation (Bontemps-Gallo et al., 2016). These facts lead us to wonder whether the link 128 

between OPGs and the RcsCDB system is a unique feature.  129 

Thirty years ago, Fiedler and Rotering isolated revertants in OPG-defective mutants of 130 

E. coli (Fiedler and Rotering, 1988). The mutation was localized to the ompB locus now known 131 

as the envZ-ompR operon. EnvZ-OmpR, the paradigm of two-component systems, regulates the 132 

balance between OmpF (large pore diameter) and OmpC (small pore diameter) to control the 133 

diffusion rate of nutrients (Cowan et al., 1992; Forst and Roberts, 1994; Egger et al., 1997; 134 

Castillo-Keller et al., 2006; Barbieri et al., 2013). This system is also known to control motility 135 

in several bacteria (Barker et al., 2004; Clemmer and Rather, 2007; Raczkowska et al., 2011; 136 

Lee and Park, 2013; Li et al., 2014; Tipton and Rather, 2016; Pruss, 2017) and is required for 137 

full virulence in Yersinia pestis (Gao et al., 2011; Reboul et al., 2014). In D. dadantii, the 138 

EnvZ/OmpR system regulates ompF expression (no ompC homolog is present) but also kdgN, 139 

which is required for transport of oligosaccharides arising from pectin degradation during plant 140 

infection (Condemine and Ghazi, 2007). Recently, in a global in vitro transcriptomic analysis 141 

of various stresses encountered during the infectious process, Jiang et al. showed that the EnvZ-142 

OmpR system was up-regulated during osmotic stress (Jiang et al., 2016). 143 

In this study, we demonstrate that EnvZ-OmpR system is not involved in virulence. 144 

Instead, inactivation of envZ or ompR in an OPG-defective mutant restores full synthesis of 145 

pectinase and partial virulence. We also show that EnvZ-OmpR is involved in regulation of 146 

motility. Finally, we demonstrate that ompF and kdgN are osmoregulated by EnvZ-OmpR and 147 

are required for proper regulation of OPGs. 148 

 149 

Materials and Methods 150 

Bacterial strains, media and growth conditions 151 

Bacterial strains are described in Table 1. Bacteria were grown at 30°C in lysogeny 152 

broth (LB) (Bertani, 2004), or in minimal medium M63 glycerol (15mM (NH4)2SO4, 1.8μM 153 

FeSO4, 1mM MgSO4 and 100mM K2PHO4) supplemented with 0.2% glycerol as a carbon 154 
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source (Miller, 1992). Solid media were obtained by adding agar at 15 g.L-1. Motility tests were 188 

performed on LB plates containing agar at 4 g.L-1.  189 

Osmolarity (mOsM) was measured with a vapor pressure osmometer (Advanced 190 

Instruments, USA). M63 osmolarity was 330 mOsM. Osmolarity was decreased by diluting 191 

two-fold M63 with H2O to 170 mOsM. Addition of 0.1M and 0.2M NaCl increased the 192 

osmolarity to 500 and 700 mOsM, respectively. Glycerol was added after dilution with water 193 

or addition of NaCl. 194 

The solid media used to test the pectinase (M63 supplemented with 0.4% 195 

polygalacturonate (PGA) and 0.2% glycerol), cellulases (M63 supplemented with 0.2% 196 

carboxymethycellulose (CMC), 0.2% glycerol and 7mM MgSO4) and proteases (LB 197 

complemented with 1% of Fat milk) activities have been described previously (Page et al., 198 

2001).  199 

Antibiotics were used at following concentrations: spectinomycin, 2.5µg.mL-1; 200 

chloramphenicol, 12.5µg.mL-1 and gentamycin, 2µg.mL-1. 201 

 202 

Transduction, conjugation and transformation. 203 

Construction of strains was performed by transferring genes from one strain of D. 204 

dadantii to another by generalized transduction with phage ΦEC2 as described previously 205 

(Resibois et al., 1984). Plasmids were introduced in D. dadantii by conjugation or 206 

electroporation. 207 

 208 

Expression analysis 209 

Bacteria were grown up to exponential phase at various osmolarities. RNAs were 210 

extracted using Nucleospin RNA Plus Kit (Macherey Nagel) following the manufacturer’s 211 

instruction. RNAs were treated with DNase I (BioLabs). RNA qualities were checked by gel 212 

and nanodrop. 213 

cDNAs were retrotranscribed using the Superscript IV First-Strand Synthesis 214 

(Invitrogen) according to the manufacturer’s instruction.  215 

qPCR was performed using SYBR method as described previously by Hommais et al. 216 

(Hommais et al., 2011). Primers used are listed in Table 2. ipxC, an UDP-N-acetylglycosamine 217 

deacetylase, was used as a reference gene (Hommais et al., 2011). 218 
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107 bacteria in 5µL were spotted onto pectinase (PGA), cellulase (CMC), protease or 245 

motility plates. After 48h incubation, PGA plates were flooded with a 10% copper acetate 246 

solution, which forms a blue complex with the PGA. Diameters of the clear haloes around the 247 

colony were measured as an indication of pectinase production. After 48h incubation, CMC 248 

plates were flooded with a 1mg/ml red Congo solution and washed several time with 1M NaCl, 249 

allowing formation of a red complex with the CMC. Diameters of the clear haloes around the 250 

colony were measured as an indication of cellulase production. After 48h incubation, abilities 251 

of the strain to degrade milk protein were observed. Swim diameters were measured after 48 252 

hours of incubation. 253 

 254 

Pathogenicity test.  255 

Potato tubers and chicory leaves were inoculated as previously described (Page et al., 256 

2001). Bacteria from an overnight culture in LB medium were recovered by centrifugation and 257 

diluted in water. For potato tubers, sterile pipette tips containing a bacterial suspension of 107 258 

cells in 5µL were inserted into the tuber (Amandine variety). After 72h of incubation in a dew 259 

chamber, tubers were sliced vertically through the inoculation point, and the weight of the 260 

maceration was measured. For chicory leaves, leaves were wounded prior inoculation of 107 261 

bacteria and incubated in a dew chamber at 30°C until 48h. 262 

 263 

Transmission electron microscopy 264 

Samples were analyzed by the Bio Imaging Center of University of Lille (France). Wild-265 

type and opgG strains were grown until mid-log phase. Cells were spun for 5 min at 7,000 x g 266 

at 4°C. Bacteria were fixed with 3.125% glutaraldehyde, washed in 0.1M phosphate buffer pH 267 

7.4 and postfixed with 1% OsO4. Samples were dehydrated with graded acetone series, 268 

embedding in EMBED resin, and air dried at 60°C. Thin and ultrathin sections were prepared 269 

using an ultramicrotome (Reichert OM U3) or an ultramicrotome (LKB Ultrotome III 8800) 270 

and stained with uranyl acetate. Microscopy was performed with a Hitachi H600 microscope at 271 

75keV electron energy. The periplasm length was measured using ImageJ software.  272 

 273 

Statistical Analysis 274 

For statistical analyses, Graph-prism6 software was used to analyze data using One-275 

Way ANOVA. 276 
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Characterization of envZ and ompR deletion in wild-type and opgG background 281 

To determine whether the EnvZ-OmpR system interacts with OPG, we inactivated envZ 282 

or ompR in wild-type and opgG mutant backgrounds (Figure 1A). We then looked at envZ and 283 

ompR expression at various osmolarities (Figure 1B). As expected, expression of both genes 284 

was low in wild-type and not affected by osmolarity. In an opgG mutant, the expression level 285 

was similar to that observed in the wild-type strain. No expression of envZ or ompR was 286 

observed in their respective mutant strain. Interestingly, in the ompR background, a low but 287 

measurable expression of envZ was observed. Based on the locus organization, we would expect 288 

the ompR mutation to be polar. Expression of envZ in an ompR deletion background suggests 289 

the presence of a secondary promoter.  290 

 291 

Inactivation of envZ or ompR restores the synthesis of pectinase in an OPG-defective 292 

strain 293 

Strains devoid of OPGs are impaired in their ability to synthesize virulence factors, 294 

leading to total loss of virulence. We first assayed plant cell-degrading enzyme activity (Figure 295 

2, Supplementary Figure 1), which is required for full virulence. Pectinase production and 296 

secretion were evaluated on minimal medium containing polygalacturonate, a substrate for 297 

pectinase, and,  after 48h of incubation, haloes of degradation were measured (Figure 2A). As 298 

expected, the opgG mutant showed a 40% decrease in pectinase production compared to the 299 

wild-type. While inactivation of envZ or ompR did not decrease synthesis of pectinases, envZ 300 

opgG and ompR opgG double mutants showed full restoration of  pectinase production to levels 301 

similar to wild-type.  302 

Cellulase production and secretion were evaluated on minimal medium containing 303 

carboxymethylcellulose, the substrate for cellulase, and haloes of degradation were measured 304 

after 48 h of incubation (Figure 2B). As previously shown, opgG inactivation decreased 305 

production of cellulase by 30% (Page et al., 2001). envZ or ompR null mutants exhibited similar 306 

cellulase levels as the wild-type. envZ opgG and ompR opgG double mutants displayed a 307 

reduction in cellulase production similar to the opgG strain.  308 

We also assayed for production of protease on plates containing 1% milk fat (Table 3). 309 

The ability of each strain to degrade milk protein was evaluated after 48 h. No restoration of 310 

protease activity was observed in any of the double-mutant strains. 311 

Taken together, our data show that EnvZ-OmpR is not involved in regulation of 312 

PCWDEs. However, disruption of either envZ or ompR is enough to restore full pectinase 313 

production in an OPG-defective strain, but not cellulase or protease synthesis.  314 
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  362 

The EnvZ-OmpR system is involved in motility regulation 363 

Motility is known to be an important virulence factor (Reverchon and Nasser, 2013). 364 

Furthermore, by screening motility in OPG-defective mutants of E. coli, Fiedler and Rotering 365 

isolated revertants in the envZ-ompR operon (Fiedler and Rotering, 1988). To determine 366 

whether disruption of envZ-ompR could restore the loss of motility in the opgG mutant, we 367 

assayed for motility by measuring swim diameters on 0.4% agar plates (Figure 3A, 368 

Supplementary Figure 1). As described previously, the opgG mutant showed a reduction in 369 

motility (one third of wild-type levels). Inactivation of envZ or ompR resulted in a 40% 370 

reduction in motility compared to the wild-type strain. However, the same mutation in the opgG 371 

background did not restore motility.  372 

The regulatory cascade for motility is separated into three classes of promoter (Figure 373 

3B). Under motility-inducing conditions, flhDC, the master regulator, is up-regulated to 374 

modulate expression of genes under the control of a class II promoter. Finally, class II genes 375 

regulate genes with class III promoters (e.g. fliC, the flagellin). We next tested the effect of the 376 

EnvZ-OmpR system on regulation of  motility. In wild-type background, expression of the 377 

master regulator flhD, and consequently fliC,  decreased ten-fold from low (170 mOsM) to high 378 

(700 mOsM) osmolarity (Figure 3C, D). This data agrees with our previous observation of a 379 

two-fold decrease in wild-type motility in the same osmolarity range (Bontemps-Gallo et al., 380 

2013). Inactivation of envZ or ompR lead to a decrease in flhD expression, but, save for 170 381 

mOsM, this decrease was not statistically significant (Figure 3C). fliC expression decreased 382 

1.5-fold at 170 and 330 mOsM in the envZ and ompR mutants compared to the wild-type (Figure 383 

3C, D). Disruption of opgG resulted in low expression of both flhD and fliC regardless of the 384 

genetic background and osmolarity (Figure 3C, D). Our results show that EnvZ-OmpR are 385 

involved in the regulation of motility but not as a main regulator of this cascade. Inactivation 386 

of this system cannot rescue motility in the opgG background. 387 

 388 

Inactivation of EnvZ-OmpR systems partially restores virulence in an OPG -defective 389 

strain 390 

Previously, we demonstrated that restoration of pectinase production in an OPG-391 

defective strain is enough to restore virulence in potato tubers but not in chicory leaves 392 

(Bontemps-Gallo et al., 2014). We observed that inactivation of the EnvZ-OmpR system in an 393 

opgG mutant lead to restoration of full pectinase synthesis (Figure 2A). We therefore 394 

determined whether  inactivation of this system could restore virulence in both potato tubers 395 
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(Figure 4, Supplementary Figure 1) and chicory leaves (Figure 5). Following inoculation of 444 

bacteria in both vegetables and incubation at 30°C, we analyzed virulence levels. Inactivation 445 

of envZ or ompR in a wild-type background had no effect on virulence levels regardless of the 446 

infection model used (Figures 4, 5). Interestingly, when the system was inactivated in an OPG-447 

defective strain, macerations were observed in the tubers (Figure 4). However, severity of 448 

disease was not as strong as for the wild-type strain (only a third of the average maceration 449 

weight of the wild-type). No restoration of virulence was observed for envZ opgG or ompR 450 

opgG double mutants in chicory leaves (Figure 5). Our data demonstrate that EnvZ-OmpR is 451 

not involved in virulence in D. dadantii. Furthermore, restoration of pectinase synthesis in the 452 

double mutants allows for maceration but only in potato tubers. 453 

 454 

ompF and kdgN are osmoregulated through EnvZ-OmpR and require OPG for regulation 455 

In D. dadantii, EnvZ-OmpR regulates at least two genes involved in transport: ompF 456 

and kdgN (Condemine and Ghazi, 2007). KdgN transports oligosaccharides arising from pectin-457 

mediated degradation during plant infection. OmpF is a porin with a pore diameter of 1.12 nm 458 

that allows non-specific import of hydrophilic metabolites of less than 600 Da. We analyzed 459 

expression of these two genes at 170, 330, 500 and 700 mOsM in a wild-type background 460 

(Figure 6A, B). Expression increased sixteen-fold for ompF and twenty-two-fold for kdgN 461 

between 170 and 330 mOsM. Subsequently, expression decreased two-fold for both genes 462 

between 330 and 500 mOsM, and two-fold for ompF when osmolarity increased to 700 mOsM. 463 

In envZ or ompR single mutants, regulation was completely lost showing that ompF and kdgN 464 

are part of the regulon (Figure 6A, B). Both genes followed a classic bell curve observed for 465 

gene regulation by EnvZ-OmpR in E. coli (Lan and Igo, 1998). Interestingly, in the opgG 466 

mutant, regulation was completely lost (Figure 6A, B). At 170 mOsM, the expression level of 467 

ompF or kdgN in the OPG-defective strain was at a similar level to wild-type, regardless of 468 

medium osmolarity. These data indicate that the EnvZ-OmpR system regulates expression of 469 

ompF and kdgN in an OPG-dependent manner. 470 

 471 

OPGs are not required for the activation of the CpxAR two-component system 472 

To show whether two-component system dysfunction is a general feature of bacteria 473 

lacking OPGs, we investigated the potential relationship between another two-component 474 

system and OPGs. Among the thirty-two two-component systems in D. dadantii, three systems 475 

are involved in sensing stress:RcsCDB, EnvZ-OmpR and CpxAR. CpxAR is involved in 476 

perception of envelope stress (Bontemps-Gallo et al., 2015). Inactivation of this system in an 477 
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opgG background does not restore any phenotype (Bontemps Gallo, 2013). CpxAR regulates 517 

spy, encoding for a periplasmic chaperon, and degP, a periplasmic protease (Bontemps-Gallo 518 

et al., 2015). As previously observed, expression of spy (Figure 6C) and degP (Figure 6D) were 519 

up-regulated in a cpxA background and down-regulated for spy or similar to wild-type for degP 520 

in a cpxR background (Figure 6C, D) (Bontemps-Gallo et al., 2015). Disruption of opgG does 521 

not affect the regulation of spy or degP by the CpxAR system (Figure 6C, D). Taken together, 522 

our data shows that OPGs have a specific relationship with certain two-component systems. 523 

 524 

Periplasmic size is maintained in an OPG-defective mutant. 525 

 Periplasmic size is subject to fluctuations during osmotic stress (Bohin and Lacroix, 526 

2006) and loss of OPGs, major periplasmic components representing up to 5% of the dry weight 527 

of a cell, could affect this size. Recently, Asmar et al. demonstrated that activation of two-528 

component systems also relies on the distance between the two membranes (Asmar et al., 2017). 529 

To determine whether change in periplasm width may be one of the consequences of a lack of 530 

EnvZ-OmpR system activation in the opgG mutant, we grew bacteria until mid-log phase in 531 

low and high osmolarities and analyzed cell ultrastructure using transmission electron 532 

microscopy (Figure 7). At low osmolarity (Figure 7A, B), cells exhibited an altered cytoplasmic 533 

content  with small dense granules being observed. Since poly-phosphate granules, often 534 

accumulated by D. dadantii, typically appear white by TEM (Ogawa et al., 2000; Ayraud et al., 535 

2005; Stumpf and Foster, 2005), we suspect that the black granules are filled with ferrous poly-536 

phosphates (Lechaire et al., 2002). This cytoplasmic modification had no effect on the growth 537 

of D. dadantii. At high osmolarity (Figure 7), the cell displayed a classic rod-shaped form. 538 

Despite the strong structural difference observed for bacteria grown in low and high 539 

osmolarities, no significant difference was observed in bacterial structure between the wild-540 

type and the opgG mutant strains at any osmolarity. In addition, no relevant difference in 541 

periplasmic size was observed between the wild-type and the opgG mutant. Both strains 542 

displayed an equivalent periplasmic space: 23.99 nm +/- 3.26 for wild-type and 22.92 nm +/- 543 

3.04 for the OPG-defective strain at low osmolarity and 22.23 nm +/- 3.21 for wild-type and 544 

24.28 nm +/- 3.41 for the OPG-defective strain at high osmolarity (Figure 7E). This suggests 545 

that OPGs are not involved in control of periplasmic size. These periplasmic space 546 

measurements are similar to those observed by Asmar et al. for the closely related E. coli 547 

Enterobacterium in LB medium (around 350 mOsM) (Asmar et al., 2017). Taken together, the 548 

gene expression experiments and the microscopy observations strongly suggest that EnvZ-549 
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OmpR requires OPGs in the periplasm to be able to sense the osmolarity but that this sensing 588 

is not based on periplasmic size. 589 

 590 

Increasing concentrations of OPGs do not affect the level of EnvZ-OmpR system 591 

activation 592 

Previously, we demonstrated that the level of RcsCDB activation is controlled by the 593 

concentration of OPGs (Bontemps-Gallo et al., 2013). Therefore, we examined whether the 594 

concentration of OPGs could also modulate the level of EnvZ-OmpR activation (Figure 8). For 595 

this, we used a system in which the opgGH operon is under the control of the PBAD promoter 596 

from E. coli. Control of L-arabinose concentration, enables tight regulation of the opgGH 597 

operon (Guzman et al., 1995). We grew the PBAD-opgGH, envZ PBAD-opgGH, ompR PBAD-598 

opgGH, as well as the wild-type and opgG strains, in M63 medium at various L-arabinose 599 

concentrations ranging from 0 - 1 g/L. We first confirmed that expression of the opgG and opgH 600 

genes increased in line with increasing concentration of L-arabinose (Figure 8A, B). As shown 601 

previously, without L-arabinose, no OPG is detected. OPG concentration increased in 602 

accordance with L-arabinose concentration, as described previously (Bontemps-Gallo et al., 603 

2013). We then analyzed the expression of ompF and kdgN in the same strains under the same 604 

conditions. (Figure 8C, D). Without L-arabinose, expression of ompF and kdgN in the PBAD-605 

opgGH strain was similar to that measured for the opgG mutant (Figures 6, 8C, D). In the 606 

presence of L-arabinose, regardless of the concentration, the expression of both genes was 607 

similar to expression in the wild-type strain (Figures 6, 8C, D). Inactivation of either envZ or 608 

ompR in the PBAD-opgGH strain lead to a low expression level regardless of the presence of L-609 

arabinose. Our data show that OPGs are required for transmission of the sensing signal but that 610 

they do not control the level of EnvZ-OmpR activation.  611 

 612 

Discussion 613 

Since their first characterization in 1973 by E.P. Kennedy’s group at Harvard Medical 614 

School, the osmoregulated periplasmic glucans have been described to play an important role 615 

in osmoprotection (Kennedy, 1982; Lacroix, 1989; Breedveld and Miller, 1994; Cayley et al., 616 

2000; Bontemps-Gallo et al., 2017), in envelope structure (Delcour et al., 1992; Banta et al., 617 

1998; Bontemps-Gallo et al., 2017), in virulence (Bhagwat et al., 2009) as well as in cell 618 

signaling (Fiedler and Rotering, 1988; Ebel et al., 1997; Bouchart et al., 2010). Among the 619 

different models used to study the biological function of this carbohydrate, D. dadantii is the 620 

most developed model for understanding their role in virulence and cell signaling. 621 
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The mutant devoid of OPG is described as having a complex pleiotropic phenotype: 661 

increased mucoid appearance (Breedveld and Miller, 1994; Ebel et al., 1997; Page et al., 2001), 662 

a decrease in motility (Fiedler and Rotering, 1988; Page et al., 2001; Bhagwat et al., 2009) and 663 

a loss of virulence (Bontemps-Gallo and Lacroix, 2015). The mucoid appearance of bacterial 664 

colonies is the consequence of activation of the RcsCDB two-component system (Bouchart et 665 

al., 2010; Bontemps-Gallo et al., 2013). This activation leads to up-regulation of the eps operon 666 

(Ebel et al., 1997; Bouchart et al., 2010), the genes of which are responsible for synthesis of  667 

exopolysaccharides. The dramatic decrease in motility is also demonstrated to be a consequence 668 

of inactivation of the RcsCDB two-component system (Bouchart et al., 2010; Bontemps-Gallo 669 

et al., 2013; Bontemps-Gallo and Lacroix, 2015). Here, we showed that if EnvZ-OmpR is 670 

involved in co-regulation of motility, inactivation of the system cannot restore motility in a 671 

strain lacking OPGs (Figure 3). 672 

Loss of virulence, certainly the most investigated phenotype, is more complex to 673 

explain. Several mutations have now been described that partially (in genes encoding RcsCDB 674 

(Bouchart et al., 2010), KdgR, PecT (Bontemps-Gallo et al., 2014)) or fully restore virulence 675 

(in the gene encoding PecS (Bontemps-Gallo et al., 2014)) in D. dadantii. Restoration of 676 

virulence in potato tubers, reserve organs, depends only on the ability to restore full production 677 

of pectinase (Bontemps-Gallo et al., 2014). Restoration of virulence in non-reserve organs 678 

requires restoration of more factors, as bacteria will encounter several plant defense 679 

mechanisms (e.g. the oxidative burst) (Reverchon and Nasser, 2013; Bontemps-Gallo et al., 680 

2014). In this study, we showed that inactivation of the EnvZ-OmpR system partially restores 681 

virulence in potato tubers (Figure 4) but not in chicory leaves (Figure 5). The result matched 682 

with the restoration of the pectinase production (Figure 1).  683 

 Finally, the second major finding of this study is the requirement for OPGs for activation 684 

of the EnvZ-OmpR system. In E. coli, the EnvZ-OmpR system senses osmolarity in an 685 

unknown manner and modulates expression of genes necessary for adaptation to the new 686 

conditions (Forst and Roberts, 1994; Castillo-Keller et al., 2006). This system is characterized 687 

both as a repressor (high osmolarity) and as an activator (low osmolarity) of ompF in E. coli 688 

(Lan and Igo, 1998). Surprisingly, in D. dadantii, the EnvZ-OmpR system only acts as an 689 

activator (Figure 6). This activation required OPGs in the periplasm (Figure 6). In contrast to 690 

RcsCDB (Bontemps-Gallo et al., 2013), periplasmic OPG concentration does not affect the 691 

level of activation of the EnvZ-OmpR system (Figure 8). The relationship between EnvZ-692 

OmpR and OPGs is most likely indirect yet specific, since the CpxAR system was not affected 693 

by OPGs (Figure 6).  694 
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Several questions remain and require further investigations. Do other two-component systems 743 

need OPGs to be functional in D. dadantii? Preliminary data from our laboratory suggests that, 744 

among the thirty-two two-component systems, only RcsCDB and EnvZ-OmpR activation is 745 

affected by OPG presence/concentration. Does the specific relationship between the RcsCDB 746 

or EnvZ-OmpR system and OPGs also exist in phylogenetically closely-related bacterial 747 

species? In non-pathogenic E. coli, inactivation of RcsCDB or EnvZ-OmpR restores motility 748 

in an opgG mutant (Fiedler and Rotering, 1988; Girgis et al., 2007). In Salmonella enterica 749 

Serovar Typhimurium, inactivation of RcsCDB restores motility but not virulence in mice 750 

(Kannan et al., 2009). However, the relationship between OPGs and two-component systems 751 

has not been investigated in other bacteria. Finally, the more intriguing feature is the 752 

mechanism(s) by which OPGs modulate two-component system activation.  753 

 754 

Table 755 

Table 1: Strains used in the study 756 

Strain Relevant Genotype and/or phenotypea Source or Reference 
EC3937 wild-type Laboratory collection 

NFB3723 opgG::Cml (Bontemps-Gallo et al., 2013) 
NFB3835 opgG::Cml miniTn5 PBAD-opgGH-Spe (Bontemps-Gallo et al., 2013) 
NFB7422 ompR::Gm (Bontemps-Gallo et al., 2016) 
NFB7423 ompR::Gm opgG::Cml This study 
NFB7440 ompR::Gm opgG::Cml miniTn5 PBAD-

opgGH-Spe 
This study 

NFB7515 cpxA::Gm (Bontemps-Gallo et al., 2015) 
NFB7521 envZ::Gm (Bontemps-Gallo et al., 2016) 
NFB7524 envZ::Gm opgG::Cml This study 
NFB7532 cpxR::Gm (Bontemps-Gallo et al., 2015) 
NFB7534 cpxR opgG::Cml This study 
NFB7632 cpxA::Gm opgG::Cml This study 
NFB7731 envZ::Gm opgG::Cml miniTn5 PBAD-

opgGH-Spe 
This study 

a: Cml: chloramphenicol resistance, Gm: Gentamicin resistance, Spe: spectinomycin resistance. 757 

PBAD-opgGH fusion is carried by a mini-Tn5. 758 

 759 

Table 2: qPCR primers 760 
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Primer Sequence Efficiency Reference 

ompF-F CGT AAC TCT GGT GTT GCT ACT T 
1.843 This study 

ompF-R AGT CGC TAT GTG CTG ATT GG 

kdgN-F CCT GCG TTA TCG TCC TTT CTA C 
1.428 This study 

kdgN-R CAG CAC GCT GGT AAT GGT ATA G 

ompR-F GCT CGA TTG ATG TGC AGA TTT C 
1.904 This study 

ompR-R ACA AAG ACG TAG CCC AAC C 

envZ-F CTG GCG GAG TCG ATC AAT AA 
1.652 This study 

envZ-R GCC ACT TCC ATC TGC ATT TC 

spy-F CGG AAG GCG TAG TCA ATC AA 
1.943 This study 

spy-R TTT CTG TTC CGG CGT CAA 

degP-F CCA GAT TGT CGA ATA CGG AGA G 
1.733 This study 

degP-R GCA TCC ACT TTC ATG GCT TTA G 

opgG-F CCG GAA CAG GCT TAT GTG AT 
1.774 This study 

opgG-R AAT CGA CCA GGA ATG CAG TAG 

opgH-F GGA ACT GGC GAT AGC TTT GT 
1.547 This study 

opgH-R CCA CTC CGC CGT ATG ATT TAG 

flhD-F TCG GTT GGG TAT CAA TGA AGA A 
1.815 This study 

flhD-R TCA CTG AAG CGG AAA TGA CAT A 

fliC-F CAC GGC TCA TGT TGG ATA CT 
1.676 This study 

fliC-R CA TTG ACA ACC TGA GCA ACA C 

ipxC-F AAA TCC GTG CGT GAT ACC AT 
1.862 (Hommais et al., 2011) 

ipxC-R CAT CCA GCA GCA GGT AGA CA 
 765 

Table 3: Protease activity 766 
Protease activities were observed on plates by the presence of a clear halo and marked as ‘+’. 767 
Data represent observations from three independent experiments. 768 
Strain  

Wild-type + 

opgG - 

envZ + 

envZ opgG - 

Formatted Table

Deleted: plate769 
Deleted: observation770 
Formatted Table
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ompR + 

ompR opgG - 

 771 

Figure Legend 772 

Figure 1: Characterization of the envZ and ompR deletion in wild-type and opgG background. 773 
(A) Schematic of the envZ-ompR locus in the wild-type strain and genetic organization of the 774 
mutant strains. (B) Expression of envZ and ompR was analyzed by qPCR. Bacteria were grown 775 
at 170, 330, 500 and 700 mOsM. Relative gene expression was calculated using ipxC as a 776 
reference (Hommais et al., 2011). Data represent mean +/- standard deviation of three 777 
independent experiments. An asterisk indicates a significant difference with p< 0.0001. 778 
 779 

Figure 2: Pectinase (A) and cellulase (B) activities 780 
Exoenzyme activities were estimated on plates by measurement of halo diameters, expressed 781 
in cm of substrate degradation. Data represent mean +/- standard deviation of twenty 782 
independent experiments. An asterisk indicates a significant difference with p< 0.0001 783 
 784 

Figure 3: Effect of EnvZ-OmpR on motility in wild-type and opgG background. 785 
(A) Motility of wild-type, opgG, envZ, envZ opgG, ompR, ompR opgG strains. Motility was 786 
measured in M63 semisolid plates. Swim diameters were measured after 48h of incubation at 787 
30°C. (B) Schematic of the regulatory cascade of motility. FlhDC, a master regulator and a 788 
class I promoter, modulate gene expression with a class II promoter (e.g. fliA). In return, the 789 
products of those genes regulate genes with a class III promoter (e.g. fliC). (C-D). Expression 790 
of (C) flhD and (D) fliC in wild-type, opgG, envZ, envZ opgG, ompR and ompR opgG, strains 791 
Bacteria were grown at 170, 330, 500 and 700 mOsM. The expression of (C) flhD, (D) fliC was 792 
analyzed by qPCR. Relative gene expression was calculated using ipxC as a reference 793 
(Hommais et al., 2011). Data represent mean +/- standard deviation of ten independent 794 
experiments. An asterisk indicates a significant difference with p< 0.0001 for ****, p< 0.001 795 
for ***, p< 0.01 for ** and p< 0.05 for *. 796 
 797 

Figure 4: Weight of maceration on potato tubers for wild-type, opgG, envZ, envZ opgG, ompR, 798 
ompR opgG strains.  799 
Bacteria were inoculated into holes on potato tubers. Maceration (g) was weighed after 72h of 800 
incubation at 30°C. Data represent mean +/- standard deviation of at least ten independent 801 
experiments. 802 
 803 

Figure 5: Pathogenicity of wild-type, opgG, envZ, envZ opgG, ompR, ompR opgG strains on 804 
chicory leaves. 805 
Bacteria were inoculated into scarified chicory leaves. Disease symptoms were observed after 806 
48h of incubation at 30°C. The results presented are one of the three independent experiments 807 
performed.  808 
 809 

Figure 6: Expression of (A) ompF and (B) kdgN in wild-type, opgG, envZ, envZ opgG, ompR 810 
and ompR opgG, strains and of (C) spy and (D) degP in wild-type, opgG, cpxA, cpxA opgG, 811 
cpxR, cpxR opgG strains at various osmolarities 812 
Bacteria were grown at 170, 330, 500 and 700 mOsM. The expression of (A) ompF, (B) kdgN 813 
(C) spy and (D) degP were analyzed by qPCR. Relative gene expression was calculated using 814 

Deleted: .815 
Deleted: were816 

Deleted: Asterisk indicate817 

Deleted: Pectate-lyase818 
Deleted: the 819 

Deleted: Asterisk indicate820 

Deleted: gene821 
Deleted: gene822 
Deleted: II823 
Deleted: were824 

Deleted: Asterisk indicate825 



 

 16 

ipxC as a reference (Hommais et al., 2011). Data represent mean +/- standard deviation of three 826 
independent experiments. An asterisk indicates a significant difference with p< 0.0001 for **** 827 
and p< 0.01 for **. 828 
 829 

Figure 7: Transmission electron microscopy images of wild-type (A, C) and opgG mutant (B, 830 
D) at low osmolarity (A, B) and high osmolarity (C, D).  831 
Images show similar architecture for both strains when grown in the same medium but 832 
differences when osmolarity is varied. (E) Periplasm size (nm) from TEM images. 833 
 834 

Figure 8: Effect of OPG concentration on expression of opgG, opgH, ompF, and kdgN.  835 
Bacteria were grown in M63 medium (330 mOsM) with increasing L-arabinose concentration 836 
ranging from 0 - 1 g/L. The expression of (A) opgG, (B) opgH, (C) ompF, and (D) kdgN was 837 
analyzed by qPCR. Relative gene expression was calculated using ipxC as a reference 838 
(Hommais et al., 2011). Data represent mean +/- standard deviation of three independent 839 
experiments. An asterisk indicates a significant difference with p< 0.0001 for ****, p< 0.001 840 
for ***, p< 0.01 for ** and p< 0.05 for *. 841 
 842 
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