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1 Supplementary Data

Supplementary simulations probed three concerns regarding the prescreening approach presented in
the main manuscript. The first analysis tested the effects of participant dropout after behavioral
prescreening (end of section 2 in the main manuscript). The second analysis tested the robustness of
the approach to heteroscedastic measurement errors, scaling with the latent behavioral and neural
variables (Counterargument 3 in the main manuscript). The third probed the robustness of
prescreening to different levels of reliability. Here, we provide a short description of these
simulations and present their results. For full details, readers are referred to the simulation code,
which is publicly available at https://osf.io/hjdcf/.

1.1. SIMULATING DROPOUT
This analysis followed all details of the main simulation with the exception of the sampling
procedure for extreme groups. Instead of sampling the most extreme n/2 cases, this variant sampled

n*0.6 cases from either end of the prescreened distribution. In a second step, n/2 cases were
randomly sampled from either extreme group to simulate a dropout rate of 20%.

1.2. SIMULATING HETEROSCEDASTIC MEASUREMENT ERROR

This analysis deviated from the main simulation in the way measurement errors were modelled. First,
behavioral and neural measurement reliabilities were fixed to

relbehav = relbrain =.7 (Sl)
Correspondingly, the correlation 7, between ‘true’ behavioral and neural scores was defined as

rh = 1o/ relpehay (S2),



and clipping the absolute value of || < 1. The simulation then drew a population of 10’ normally
distributed true behavioral values x; ~ N(0,1). The corresponding true brain values y; were computed
as

Vi=rpxx;+/1—12%xe (S3),

with the random variable e ~ N(0,1). Crucially, these true values were then transformed into the
observed values x and y with heteroscedastic measurement error as follows:

xX = ”ﬂelbehcwo.4 * Z(xl) + \/1 - relbehavo.8 *ex Zp(xl) (S4),

with the random variable e ~ N(0,1); z(x;) denoting the z-value (x;-pu(x;))/c(x;); and p(x;) denoting the
cumulative density function at z(x;) (i.e. the area under the normal density curve from -co to z(x;)).

Accordingly, y; was transformed into y as

y = relbrain().4 * Z(yl) + \/1 - ‘relbraino.8 *e* zp(yl) (SS)

The resulting measures x and y were estimates of x; and y; with strongly heteroscedastic measurement
errors (Supplementary Figure 1A) and correlated with each other with the desired pre-specified level
7, on the population level (with 7, being limited to a maximum of 0.7, because r, cannot exceed 1,
equation S2). They were simulated for different levels of 7, and used for power simulations involving
prescreening, following the same routines as the main simulation.

1.3. SIMULATING DIFFERENT LEVELS OF RELIABILITY

The purpose of this analysis was to probe, whether the power boost afforded by prescreening for a
given level of 7, depends on the constituent contributions of reliabilities and 7. Tests with low
reliability will be more prone to biased error sampling, which may affect the efficacy of the
approach.

This analysis was similar to 1.2. above, but fixed the observable correlation 7, to .3 and let reliability
range from .3 to 1 in increments of .1 (with relyenay = relbrain). For each level of reliability, 7, was
determined using equation S2. Next, true behavioral (x;) and neural (y;) scores were generated as
following equation S3. The observed values x and y were then derived as:

x = relpenay * X + ,’ 1- relbehavz *xe (S6)
y= relbrain *y, + ,’ 1- relbrainz *xe (87)

and



both with the random variable e ~ N(0,1).

Following the same routines as the main simulation, x and y were used for power simulations with
and without prescreening (n*6). Power with and without prescreening was plotted for each level of
reliability and across sample sizes. Additionally, we plotted the in-sample total and error variance for
each level of reliability with and without prescreening (average across 10.000 samples with n = 30).

Results showed that power and the power for a given r, was independent of the underlying 7, and
reliabilities (Supplementary Figure 2). This result was replicated for an additional simulation fixing
ro = .3 and m, = .6, while varying relpensy, (from .3 to 1 in steps of .1), which simultaneously
determined relprqin as:

G

relbrain -

(S8)

relpehav

(c.f. Equation 1). The results of this analysis were identical to those shown in Supplementary Figure
2 and can be replicated running the accompanying online code. Both results converge to show that
power is a function of r,, sample size and sampling strategy, but given r, is independent of the
underlying combination of 7, and reliabilities. In practice, researchers will of course aim to detect a
given true effect r, and r, will dramatically depend on measurement reliability (equation 1 and Figure
1 in main manuscript).



2 Supplementary Figures

z

l

B)

7] j-
308

2 :

g 206

T ©

Q Q

g T 04
>

(7]

G £o02

heteroscedastic
error

20 30 40 50 60 70 80 90 100 110 120

Prescreening n*6

O I 1 0.5
——r:06
——r 0.7
—— r,-08
——r: 0.9

J

gos 4
o6l dropout: 20%
©
2
T 0.4
g
‘% 0-2

——6—6—6—6—6—06—0—06—90

20 30 40 50 60 70 80 90 100110 120

n

Supplementary Figure 1. Supplementary simulations of dropout and heteroscedastic error. Panel A)
shows the strongly heteroscedastic error for 10* randomly sampled datapoints from a population of
107 latent (x;) and observed (x) behavioral values, simulated according to equation S4. Panel B)
shows the results of corresponding power simulations, based on observations with strongly
heteroscedastic errors and using behavioral prescreening with a sample size of n*6. Panel C) shows
simulated power for behavioral prescreening with n*6, assuming selective sampling of 0.6*n cases at
either end of the distribution and a random drop out of 20% of those cases before correlation.
Different levels of observed correlations 7, are indicated by saturation, as shown in the inset.
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Supplementary Figure 2. Supplementary simulations of different levels of reliability. Panel A) and
B) show simulated power without and with prescreening, respectively. The observable (population)
correlation in both cases was fixed to .3, but the underlying reliability and true correlation varied as
shown in the inset (true correlations varied inversely according to equation S2). Curves for different
reliabilities are almost perfectly overlapping, showing that power depended on r,, sampling strategy
and sample size, but not on the combination of 7 and reliabilities underlying 7,. Note that researchers
in practice will aim to detect a given 7, and therefore », and power will vary dramatically with
measurement reliability (Figure 1 in the main manuscript). Panel C) shows levels of total and error
variance for one measure (average across 10.000 samples with n = 30). Blue and black lines show in-
sample variance with and without prescreening, respectively. Solid and dashed lines show total and
error variance, respectively. Note that the regression error between measures will depend on 7, as
well and that r, inversely varies with reliability for a given 7, (equation S2). While total in-sample
variance is constant across reliabilities, error variance decreases with reliability. For very low
reliabilities, prescreening somewhat inflates error variance (reflecting biased error sampling for
extreme groups). However, this effect is small compared to the total gain in variance.



