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1 Supplementary Data 

Supplementary simulations probed three concerns regarding the prescreening approach presented in 
the main manuscript. The first analysis tested the effects of participant dropout after behavioral 
prescreening (end of section 2 in the main manuscript). The second analysis tested the robustness of 
the approach to heteroscedastic measurement errors, scaling with the latent behavioral and neural 
variables (Counterargument 3 in the main manuscript). The third probed the robustness of 
prescreening to different levels of reliability. Here, we provide a short description of these 
simulations and present their results. For full details, readers are referred to the simulation code, 
which is publicly available at https://osf.io/hjdcf/.  

1.1. SIMULATING DROPOUT 

This analysis followed all details of the main simulation with the exception of the sampling 
procedure for extreme groups. Instead of sampling the most extreme n/2 cases, this variant sampled 
n*0.6 cases from either end of the prescreened distribution. In a second step, n/2 cases were 
randomly sampled from either extreme group to simulate a dropout rate of 20%.    

 

1.2. SIMULATING HETEROSCEDASTIC MEASUREMENT ERROR 

This analysis deviated from the main simulation in the way measurement errors were modelled. First, 
behavioral and neural measurement reliabilities were fixed to  

relbehav = relbrain =  .7 (S1). 

Correspondingly, the correlation rh between ‘true’ behavioral and neural scores was defined as  

rh = ro/ relbehav (S2), 
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and clipping the absolute value of |rh| < 1. The simulation then drew a population of 107 normally 
distributed true behavioral values xl ~ N(0,1). The corresponding true brain values yt were computed 
as  

𝑦! = 𝑟! ∗ 𝑥! + 1− 𝑟!! ∗ 𝑒 (S3), 

with the random variable e ~ N(0,1). Crucially, these true values were then transformed into the 
observed values x and y with heteroscedastic measurement error as follows:  

𝑥 = 𝑟𝑒𝑙!"!!"
!.! ∗ 𝑧 𝑥! + 1− 𝑟𝑒𝑙!"!!"

!.! ∗ 𝑒 ∗ 2𝑝(𝑥!) (S4), 

with the random variable e ~ N(0,1); z(xl) denoting the z-value (xl-µ(xl))/σ(xl); and p(xl) denoting the 
cumulative density function at z(xl) (i.e. the area under the normal density curve from -∞ to z(xl)).  

Accordingly, yl was transformed into y as 

𝑦 = 𝑟𝑒𝑙!"#$%
!.! ∗ 𝑧 𝑦! + 1− 𝑟𝑒𝑙!"#$%

!.! ∗ 𝑒 ∗ 2𝑝(𝑦!) (S5). 

The resulting measures x and y were estimates of xl and yl with strongly heteroscedastic measurement 
errors (Supplementary Figure 1A) and correlated with each other with the desired pre-specified level 
ro on the population level (with ro being limited to a maximum of 0.7, because rh cannot exceed 1, 
equation S2). They were simulated for different levels of ro and used for power simulations involving 
prescreening, following the same routines as the main simulation.     

 

1.3. SIMULATING DIFFERENT LEVELS OF RELIABILITY 

The purpose of this analysis was to probe, whether the power boost afforded by prescreening for a 
given level of ro depends on the constituent contributions of reliabilities and rh. Tests with low 
reliability will be more prone to biased error sampling, which may affect the efficacy of the 
approach. 

This analysis was similar to 1.2. above, but fixed the observable correlation ro to .3 and let reliability 
range from .3 to 1 in increments of .1 (with relbehav = relbrain). For each level of reliability, rh was 
determined using equation S2. Next, true behavioral (xl) and neural (yl) scores were generated as 
following equation S3. The observed values x and y were then derived as: 

𝑥 = 𝑟𝑒𝑙!"!!" ∗ 𝑥! + 1− 𝑟𝑒𝑙!"!!"
! ∗ 𝑒 (S6) 

and 

𝑦 = 𝑟𝑒𝑙!"#$% ∗ 𝑦! + 1− 𝑟𝑒𝑙!"#$%
! ∗ 𝑒 (S7) 
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both with the random variable e ~ N(0,1).  

Following the same routines as the main simulation, x and y were used for power simulations with 
and without prescreening (n*6). Power with and without prescreening was plotted for each level of 
reliability and across sample sizes. Additionally, we plotted the in-sample total and error variance for 
each level of reliability with and without prescreening (average across 10.000 samples with n = 30).  

Results showed that power and the power for a given ro was independent of the underlying rh and 
reliabilities (Supplementary Figure 2). This result was replicated for an additional simulation fixing 
ro = .3 and rh = .6, while varying relbehav (from .3 to 1 in steps of .1), which simultaneously 
determined relbrain as:      

𝑟𝑒𝑙!"#$% =
!!
!!

!

!"#!"!!"
 (S8) 

(c.f. Equation 1). The results of this analysis were identical to those shown in Supplementary Figure 
2 and can be replicated running the accompanying online code. Both results converge to show that 
power is a function of ro, sample size and sampling strategy, but given ro is independent of the 
underlying combination of rh and reliabilities. In practice, researchers will of course aim to detect a 
given true effect rh and ro will dramatically depend on measurement reliability (equation 1 and Figure 
1 in main manuscript).      
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2 Supplementary Figures 

 

 

Supplementary Figure 1. Supplementary simulations of dropout and heteroscedastic error. Panel A) 
shows the strongly heteroscedastic error for 104 randomly sampled datapoints from a population of 
107 latent (xl) and observed (x) behavioral values, simulated according to equation S4. Panel B) 
shows the results of corresponding power simulations, based on observations with strongly 
heteroscedastic errors and using behavioral prescreening with a sample size of n*6. Panel C) shows 
simulated power for behavioral prescreening with n*6, assuming selective sampling of 0.6*n cases at 
either end of the distribution and a random drop out of 20% of those cases before correlation. 
Different levels of observed correlations ro are indicated by saturation, as shown in the inset. 
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Supplementary Figure 2. Supplementary simulations of different levels of reliability. Panel A) and 
B) show simulated power without and with prescreening, respectively. The observable (population) 
correlation in both cases was fixed to .3, but the underlying reliability and true correlation varied as 
shown in the inset (true correlations varied inversely according to equation S2). Curves for different 
reliabilities are almost perfectly overlapping, showing that power depended on ro, sampling strategy 
and sample size, but not on the combination of rh and reliabilities underlying ro. Note that researchers 
in practice will aim to detect a given rh and therefore ro and power will vary dramatically with 
measurement reliability (Figure 1 in the main manuscript). Panel C) shows levels of total and error 
variance for one measure (average across 10.000 samples with n = 30). Blue and black lines show in-
sample variance with and without prescreening, respectively. Solid and dashed lines show total and 
error variance, respectively. Note that the regression error between measures will depend on rh as 
well and that rh inversely varies with reliability for a given ro (equation S2). While total in-sample 
variance is constant across reliabilities, error variance decreases with reliability. For very low 
reliabilities, prescreening somewhat inflates error variance (reflecting biased error sampling for 
extreme groups). However, this effect is small compared to the total gain in variance.     


