

Supplementary Material

Engineering Heterologous Production of Salicylate Glucoside and Glycosylated Variants Ruiquan Qi¹, Blaine A. Pfeifer^{1,2,3*}, Guojian Zhang^{2,3*}

¹Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA

²Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China

³Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China

*Correspondence:

Blaine A. Pfeifer blainepf@buffalo.edu Guojian Zhang guojianz@buffalo.edu

Supplementary Tables

PrimerSequenceirp9-F5'-CTAGCTAGCATGAAATCAGTGAATTTCT-3'irp9-R5'-ACGCGTCGACACTAGTCTACTACACCATTAAATAGGG-3'galU-F5'-GCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATA ATGGCTGCCATTAATACGAAA-3'galU-R5'-ACGCGTCGACACTAGTTTACTTCTTAATGCCCATCTC-3'pgm-F5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3'pgm-R5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'	able 51.1 CK princip used in this study. Restriction sequences are bolded.				
irp9-F5'-CTAGCTAGCATGAAATCAGTGAATTTCT-3'irp9-R5'-ACGCGTCGACACTAGTCTACTACACCATTAAATAGGG-3'galU-F5'-GCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATAATGGCTGCCATTAATACGAAA-3'galU-R5'-ACGCGTCGACACTAGTTTACTTCTTAATGCCCATCTC-3'pgm-F5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3'pgm-R5'-ACGCGTCGACACTAGTTTACGCGTTTTCAGAACTTC-3'	Primer	Sequence			
irp9-R5'-ACGCGTCGACACTAGTCTACTACACCATTAAATAGGG-3'galU-F5'-GCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATA ATGGCTGCCATTAATACGAAA-3'galU-R5'-ACGCGTCGACACTAGTTTACTTCTTAATGCCCATCTC-3'pgm-F5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3'pgm-R5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'	<i>irp9-</i> F	5'-CTAGCTAGCATGAAATCAGTGAATTTCT-3'			
galU-F5'-GCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATA ATGGCTGCCATTAATACGAAA-3'galU-R5'-ACGCGTCGACACTAGTTTACTTCTTAATGCCCATCTC-3'pgm-F5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3'pgm-R5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'	irp9-R	5'-ACGCGTCGACACTAGTCTACTACACCATTAAATAGGG-3'			
ATGGCTGCCATTAATACGAAA-3' galU-R 5'-ACGCGTCGACACTAGTTTACTTCTTAATGCCCATCTC-3' pgm-F 5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3' pgm-R 5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'	galU-F	5'-GCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATA			
galU-R5'-ACGCGTCGACACTAGTTTACTTCTTAATGCCCATCTC-3'pgm-F5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3'pgm-R5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'		ATGGCTGCCATTAATACGAAA-3'			
pgm-F 5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3' pgm-R 5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'	galU-R	5'-ACGCGTCGACACTAGTTTACTTCTTAATGCCCATCTC-3'			
<i>pgm</i> -R 5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'	pgm-F	5'-GGAATTCCCATATGGCAATCCACAATCGTGCA-3'			
	pgm-R	5'-ACGCGTCGACACTAGTTTACGCGTTTTTCAGAACTTC-3'			
ugt/4F1-F 5'-GAATTC CATATG GAGAAGATGCGTGG-3'	ugt74F1-F	5'-GAATTCCATATGGAGAAGATGCGTGG-3'			
<i>ugt74F1</i> -R 5'-ACGCGTCGACCGTACGACTAGTTTTGATCTGGATCTTGCA-3'	ugt74F1-R	5'-ACGCGTCGACCGTACGACTAGTTTTGATCTGGATCTTGCA-3'			

Table S1. PCR primers used in this study. Restriction sequences are bolded.

Plasmid	Description	Reference/Sourc
		e
pET28a	pT7, pBR322 ori, Kan ^R	Novagen
pET21c	pT7, pBR322 ori, Amp ^R	Novagen
pBAD33	pBAD, pACYC184/p15A ori, Cm ^R	[1]
pETcoco-1	pT7, OriV/S, Cm ^R	Novagen
pET28-irp9	pET28a harboring irp9 from Yersinia enterocolitica	This study
pET28-pgm	pET28a harboring pgm from E. coli K-12 MG1655	This study
pET28-galU	pET28a harboring galU from E. coli K-12 MG1655	This study
pET28-ugt74F1	pET28a harboring UDP-glycosyltransferase	This study
	(ugt74F1) from Arabidopsis thaliana	
pET28-galU-pgm	pET28a harboring galU and pgm in an operon	This study
	configuration	-
pET28-irp9-ugt74F1	pET28a harboring <i>irp9</i> and <i>ugt74F1</i> in an operon	This study
	configuration	
pET28-galU-pgm-	pET28a harboring galU, pgm, and irp9 in an operon	This study
irp9	configuration	
pRQS1	pET28a harboring galU, pgm, irp9, and ugt74F1 in an	This study
	operon configuration	
pRQS2	pETcoco-1 harboring galU, pgm, irp9, and ugt74F1	This study
	in an operon configuration	
pRQS3	pBAD harboring galU, pgm, irp9, and ugt74F1 in an	This study
	operon configuration	
pRQS4	pET21c harboring galU, pgm, and irp9 in an operon	This study
	configuration	
pMKA-41	pBAD harboring <i>irp9</i> , <i>galU</i> , and <i>pgm</i> in an operon	[2]
	configuration, Cm ^R	
pGEX-UDP	pGEX-2TK harboring ugt74F1 from Arabidopsis	[2]
	<i>thaliana</i> , Amp ^ĸ	
pGJZ1	pET28a harboring <i>oleV</i> , <i>oleW</i> , and <i>urdR</i> , Kan ^{κ}	[3]
pGJZ2	pET28a harboring <i>oleV</i> , <i>oleW</i> , <i>oleL</i> , and <i>urdR</i> , Kan ^K	[3]
pGJZ3	pET28a harboring <i>oleV</i> , <i>oleW</i> , and <i>cmmUII</i> , Kan ^R	[3]
pGJZ4	pET28a harboring oleV, oleW, oleL, and cmmUII,	[3]
	Kan ^ĸ	
pGJZ1-GT	pGJZ1 integrated with codon-modified UrdGT gene	This study
	(urdGTm)	
pGJZ2-GT	pGJZ2 integrated with codon-modified <i>urdGTm</i>	This study
pGJZ3-GT	pGJZ3 integrated with codon-modified <i>urdGTm</i>	This study
pGJZ4-GT	pGJZ4 integrated with codon-modified <i>urdGTm</i>	This study
Strain	Genotype	Source
BL21(DE3)	F- ompT hsdSB (rB-mB-) gal dcm (DE3)	Novagen
BW25113	F-, $\Delta(araD-araB)$ 567, $\Delta lacZ4787(::rrnB-3)$, LAM-,	[4]
	rph-1, Δ (<i>rhaD-rhaB</i>)568, <i>hsdR</i> 514	
BW23	BW25113:: $\Delta pheA$, $\Delta tyrA$	[2]
BW23(DE3)	BW25113:: $\Delta pheA$, $\Delta tyrA$ equipped with $\lambda DE3$	This study

Table S2. Plasmids and strains used in this study

Host	Plasmid transformed	Control	Inducer
BL21(DE3)	pRQS1	pET28a	IPTG
BL21(DE3)	pRQS2	pETcoco-1	IPTG
BL21(DE3)	pMK41, pGEX-UDP	pBAD33/pGEX-2TK	Arbinose/IPTG
BW23(DE3)	pRQS1	pET28a	IPTG
BW23(DE3)	pRQS2	pETcoco-1	IPTG
BW23(DE3)	pMK41, pGEX-UDP	pBAD33/pGEX-2TK	Arbinose/IPTG
BW23	pRQS3	pBAD33	Arbinose
BW23	pMK41, pGEX-UDP	pBAD33/pGEX-2TK	Arbinose/IPTG

Table S3. SAG producing strains developed in this study.

Table S4. SAG analog producing strains developed in this study.

Host	Plasmid transformed	Control	Inducer
BL21(DE3)	pRQS4+pGJZ1-GT	pET21c+pET28a	IPTG
BL21(DE3)	pRQS4+pGJZ2-GT		IPTG
BL21(DE3)	pRQS4+pGJZ3-GT		IPTG
BL21(DE3)	pRQS4+pGJZ4-GT		IPTG

Figure S1. Maps of pRQS plasmids used to produce SAG.

Figure S2. Maps of plasmids used to produce SAG analogs.

Supplementary Material

Figure S3 Construction of deoxysugar producing plasmids. The codon-modified *urdGTm* gene was integrated into pGJZ1, 2, 3 and 4 to produce isomeric variants of oliose and olivose shown in Fig. 3.

Figure S4 SAG analog producing strain development in which four recombinant plasmids (producing oliose and olivose chiral pairs) are co-transformed with pRQS4 into BL21(DE3).

SAG Standard 1g/L

Figure S5a. HPLC trace of authentic SAG standard (1 g/L).

Figure S5b. HPLC trace of SAG heterologous production in strain BW23(DE3)/pRQS1.

Figure S5c. HPLC trace of control strain BW23(DE3)/pET28a.

Figure S5d. HPLC trace of SAG heterologous production in strain BW23(DE3)/pRQS2.

Figure S5e. HPLC trace of control strain BW23(DE3)/pETcoco-1.

Figure S5f. HPLC trace of SAG heterologous production in strain BW23(DE3)/pMKA-41/pGEX-UDP.

Figure S5h. HPLC trace of SAG heterologous production in strain BL21(DE3)/pRQS1.

Figure S5i. HPLC trace of control strain BL21(DE3)/pET28a.

Figure S5j. HPLC trace of SAG heterologous production in strain BL21(DE3)/pRQS2.

Figure S5k. HPLC trace of control strain BL21(DE3)/pETcoco-1.

BL21(De3)/pMK41/pGEX-UDP

Figure S51. HPLC trace of SAG heterologous production in strain BL21(DE3)/pMKA-41/pGEX-UDP.

Figure S5m. HPLC trace of control strain BL21(DE3)/pBAD33/pGEX-2TK.

Figure S5n. HPLC trace of SAG heterologous production in strain BW23/pRQ3.

Control: BW2∆/pBAD

Figure S50. HPLC trace of control strain BW23/pBAD33.

Figure S5p. HPLC trace of SAG heterologous production in strain BW23/pMKA-41/pGEX-UDP.

Figure S5q. HPLC trace of control strain BW23/pBAD33/pGEX-2TK

Control: BW2∆/pBAD/ pGEX-2TK

Figure S6a. LC-MS spectrum for SAG analog 1. m/z 269.4 [M + H]⁺ and 291.3 [M + Na]⁺ (calcd. for C₁₃H₁₆O₆, 268.3).

Figure S6b. LC-MS spectrum for SAG analog 2. m/z 269.3 $[M + H]^+$ and 291.2 $[M + Na]^+$ (calcd. for $C_{13}H_{16}O_6$, 268.3).

Figure S6c. LC-MS spectrum for SAG analog 3. m/z 269.1 [M + H]⁺ and 291.3 [M + Na]⁺ (calcd. for C₁₃H₁₆O₆, 268.3).

Figure S6d. LC-MS spectrum for SAG analog 4. m/z 269.3 $[M + H]^+$ and 291.6 $[M + Na]^+$ (calcd. for $C_{13}H_{16}O_6$, 268.3).

Figure S6e. LC-MS spectrum of SAG analog control strain.

Figure S7a. HPLC trace of SAG Analog 1 heterologous production in strain BL21(DE3)/pGJZ1-GT/pRQS4.

Figure S7b. HPLC trace of SAG Analog 2 heterologous production in strain BL21(DE3)/pGJZ2-GT/pRQS4.

Figure S7c. HPLC trace of SAG Analog 3 heterologous production in strain BL21(DE3)/pGJZ3-GT/pRQS4.

Figure S7d. HPLC trace of SAG Analog 4 heterologous production in strain BL21(DE3)/pGJZ4-GT/pRQS4.

Figure S7e. HPLC trace of control strain BL21(DE3)/pET28a/pET21c.

References:

- L.M. Guzman, D. Belin, M.J. Carson, and J. Beckwith, Tight regulation, modulation, and highlevel expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177 (1995) 4121-30.
- [2] M.K. Ahmadi, L. Fang, N. Moscatello, and B.A. Pfeifer, E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metab. Eng. 38 (2016) 382-388.
- [3] G. Zhang, Y. Li, L. Fang, and B.A. Pfeifer, Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli. Sci. Adv. 1 (2015) e1500077/1e1500077/8.
- [4] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K.A. Datsenko, M. Tomita, B.L. Wanner, and H. Mori, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2 (2006) 2006 0008.