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1 Supplementary Data 

1.1 Quantitative analysis of RI tomograms of yeast in different intracellular pH 

 

Supplementary Figure 1: The effect of intracellular pH on the refractive index and dry mass of S. 

pombe. The mean refractive index (RI) distribution (A), the dry mass content (B), and cell volume (C) 

of yeast cells at different intracellular pH. The box plot indicates the interquartile ranges (IQR) with a 

line at the median. The whiskers extend to the data within the 1.5 IQR of the respective quartile. 

Outliers outside of 1.5 IQR are marked as  (for each condition N > 95). The dashed red line in (A) is 

a sigmoidal fit to the data. 
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1.2 Isoelectric points analysis for proteins in the S. pombe proteome 

 

 

Supplementary Figure 2: Histogram of the isoelectric points of all S. pombe yeast proteins, as 

computed from their primary amino acid sequence (see Munder et al., [1] for details). 



   

2 Supplementary methods: 

2.1 Particle tracking in yeast cells with different compression degrees 

We compared single-particle tracking data in S. cerevisiae cells under three different experimental 

conditions (cell treated with DNP at an external pH of 7.4, and cells treated with 0.8 M and 1 M sorbitol, 

respectively). First, the ergodicity of the underlying process was investigated by comparing the 

ensemble-averaged mean square displacement (E-MSD) to the time-and-ensemble averaged MSD 

(TE-MSD) [1] For an ergodic process, the statistics of the diffusion process is expected to be invariant 

under a time-translation, which implies that the E-MSD and TE-MSD are expected to be equal. We 

find that this is the case for cells treated with DNP and with sorbitol at 0.8 M. For cells treated with 1 

M sorbitol the E-MSD was consistently larger than the TE-MSD, indicating a weak breaking of 

ergodicity in this case (Supplementary Figure 3, TE-MSD shown as dashed line, E-MSD as circles), 

which may occur, for example, due to intermittent caging effects typically found in glass forming 

liquids. 

Considering that the diffusion of the tracer particles occurs in a complex environment, and that the 

tracer particle size likely has a rather broad distribution, one may expect their diffusion characteristics 

to be highly heterogeneous. In order to quantify this, we model the diffusion process by an ensemble 

of particles each performing fractional Brownian motion (fBm), thus showing time-averaged MSDs 

MSD𝑖(𝜏) = 𝐾𝛼,𝑖𝜏
𝛼,𝑖      (1) 

where 𝜏 = 𝑡/𝑡0 is a dimensionless time (𝑡0 is here an arbitrary time-scale), and 𝐾𝛼 has dimension μm2.  

As has been shown in a previous work [1], the fBm model correctly reproduces several key features of 

the particle motion. In particular, the displacements of the particles show Gaussian statistics, but 

subsequent displacements show persistent negative correlation.  

Subdiffusion of this kind has been observed in previous studies of diffusion in cells[2,3] and 

hydrogels[4]. The TE-MSD can then be written as 

TEMSD(𝜏) = 𝐸[MSD𝑖(𝜏)] = 𝐸[𝐾𝛼]𝐸[exp (α ⋅ log 𝜏)]   (2) 
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where in the second equality the strength 𝐾𝛼 and subdiffusion exponent 𝛼 were assumed to be 

independent random variables[5] and 𝐸[⋅] denotes the expectation value.  Note that the last factor is 

just the moment-generating function of the distribution of subdiffusion exponents with parameter log 𝜏. 

Taking the logarithm of this expression and performing a cumulant expansion we obtain 

log TEMSD(𝜏) = log 𝐸[𝐾𝛼] + ∑
𝜅𝑛 (log 𝜏)𝑛

𝑛!
∞
𝑛=1 ≈ log 𝐸[𝐾𝛼] + 𝜇𝛼 log 𝜏 +

𝜎𝛼
2

2
(log 𝜏)2 (3) 

where in the last step the cumulant expansion was truncated at the second term, effectively leading to 

a Gaussian approximation of the distribution of subdiffusion exponents having mean 𝜇𝛼 and variance 

𝜎𝛼
2. Note, that by instead performing the logarithm prior to performing the ensemble average, one 

obtains the quantity 

𝐸[log MSD(𝜏)] = 𝐸[log 𝐾𝛼] + 𝜇𝛼 log 𝜏    (4) 

which may be used to estimate the average subdiffusion exponent 𝜇𝛼. Further, we estimate the 

distribution of the logarithm of the time-averaged individual particle MSDs (MSD𝑖(𝜏)) using a 

Gaussian kernel density estimator[6]. The corresponding estimated distributions of MSDs for the three 

conditions considered are shown in Supplementary Figure 3B,D,F together with log TEMSD(τ) (black 

line in B, black circles in D and F) and 𝐸[log MSD(𝜏)] (red line in B, red circles in D and F) together 

with a fit to equation (4) (black dashed line in B, black line in D and F). Note that whereas 

log TEMSD(τ) overestimates the center of the distribution of single-particle MSDs represented in this 

way, 𝐸[log MSD (𝜏)] represents the average particle behavior well. 

Note, that by taking the difference of Eq 3 and Eq 4, one obtains 

log TEMSD(𝜏) − 𝐸[log MSD(𝜏)] = log 𝐸[𝐾𝛼] − 𝐸[log 𝐾𝛼] +
𝜎𝛼

2

2
(log 𝜏)2  (5) 

Consequently, within this model the spread in subdiffusion exponents of single particles, 𝜎𝛼, can be 

estimated via this difference, by fitting it to a quadratic expression in (log 𝜏). We find that particle 

diffusion in cells treated with DNP and cells treated with 0.8M sorbitol is well represented by this 

model, whereas diffusion in cells treated with 1 M sorbitol is not (Supplementary Figure 3C,E), 

suggesting that the model of heterogeneous fractional Brownian motion may not be applicable in the 

latter case. Under the three conditions considered, we find for the average subdiffusion exponent and 

its variation: 𝜇𝛼 = 0.67, 𝜎𝛼 = 0.2 (DNP treated cells), 𝜇𝛼 = 0.72, 𝜎𝛼 = 0.26 (0.8 M sorbitol) and 
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𝜇𝛼 = 0.8, 𝜎𝛼 not defined (1 M sorbitol). Overall, the particle diffusion appears to be qualitatively 

similar for cells treated with DNP at pH 7.4 and cells treated with sorbitol at 0.8 M. At higher osmotic 

pressures (1M sorbitol) the mobility is markedly lower, consistent with previous findings[7], but the 

estimated subdiffusion exponent is somewhat larger. The observation of weak ergodicity breaking in 

cells treated with 1 M sorbitol may suggest that increased cytoplasmic crowding induces a change in 

the mechanism of passive intracellular diffusion. 

As mentioned above, a hallmark of fBm is the existence of persistent negative correlations between 

displacements. To study this correlation, we define 𝐶𝑚(𝑛𝜏) =
〈(𝑥(𝑡+𝑚𝜏)−𝑥(𝑡))(𝑥(𝑡+(𝑚+𝑛)𝜏)−𝑥(𝑡+𝑛𝜏))〉

〈(𝑥(𝑡+𝑚𝜏)−𝑥(𝑡))
2

〉
. 

For fBm, one can show that 𝐶𝑚(𝑛𝜏) =
𝜏𝛼

2
(2|𝑛|𝛼 − |𝑚 − 𝑛|𝛼 − |𝑚 + 𝑛|𝛼). In Supplementary Figure 

4, the correlation 𝐶2(𝑛𝜏) as defined above is shown for particles diffusing in cells treated with 0.8M 

(circles) and 1M (squares) sorbitol, respectively. It is clear that the displacements show persistent 

negative correlations that agree well with the expectation for fBm (see blue and red line for the expected 

correlation for fBm with 𝛼 = 0.72 and 𝛼 = 0.8 respectively). 
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Supplementary Figure 3: Quantification of diffusion in yeast treated with DNP at pH 7.4 or treated 

with sorbitol at two concentrations (0.8 M and 1 M). (A) Time-and-ensemble averaged MSDs (dashed 
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lines) and ensemble-averaged MSDs (circles) for cells treated with DNP at pH 7.4 (blue), with sorbitol 

at 0.8 M (red) and at 1 M (black). (B,D and F) Distributions of individual particle MSD for cells treated 

with DNP (B), with sorbitol at 0.8 M (D) and at 1 M (F). The TE-MSD are shown as black circles (line 

for DNP treated cells) whereas 𝐄[𝐥𝐨𝐠 𝐌𝐒𝐃] is shown as red circles (line for DNP treated cells). (C,E) 

The difference 𝐥𝐨𝐠 𝐓𝐄𝐌𝐒𝐃(𝛕) − 𝐄[𝐥𝐨𝐠 𝐌𝐒𝐃(𝛕)] for sorbitol treated cells (C, with black circles 

corresponding to 1 M, and red circles to 0.8 M together with a best fit to the 0.8 M data (black line)) 

and DNP treated cells (E, with a best fit shown as black line). 

 

Supplementary Figure 4: The normalized displacement correlation (defined in text) as a function of 

lag time for yeast cells treated with 0.8 M sorbitol (circles) and 1 M sorbitol (squares). The measured 

correlations are compared to the theoretically expected correlations for fBm with 𝜶 = 𝟎. 𝟕𝟐 (blue line) 

and 𝜶 = 𝟎. 𝟖 (red line). 
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