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Abstract 

Neural computation models have hypothesized that the dentate gyrus drives the storage in 

the CA3 network of new memories including, e.g. in rodents, spatial memories. Can 

recurrent CA3 connections self-organize, during storage, and form what have been called 

continuous attractors, or charts – so that they express spatial information later, when 

aside from a partial cue the information may not be available in the inputs? We use a 

simplified mathematical network model to contrast the properties of spatial 

representations self-organized through simulated Hebbian plasticity with those of charts 

pre-wired in the synaptic matrix, a control case closer to the ideal notion of continuous 

attractors. Both models form granular quasi-attractors, characterized by drift, which 

approach continuous ones only in the limit of an infinitely large network. The two models 

are comparable in terms of precision, but not of accuracy: with self-organized 

connections, the metric of space remains distorted, ill-adequate for accurate path 

integration, even when scaled up to the real hippocampus. While prolonged self-

organization makes charts somewhat more informative about position in the environment, 

some positional information is surprisingly present also about environments never 

learned, borrowed, as it were, from unrelated charts. In contrast, context discrimination 

decreases with more learning, as different charts tend to collapse onto each other. These 

observations challenge the feasibility of the idealized CA3 continuous chart concept, and 

are consistent with a CA3 specialization for episodic memory rather than path 

integration.  



Introduction 

It has been suggested on the basis of network models (McNaughton and Morris, 1987, 

Treves and Rolls, 1992) that new CA3 memory representations may be primarily 

established by inputs from the dentate gyrus (DG). This hypothesis is consistent with 

behavioral evidence from spatial learning in rodents (McNaughton et al, 1989; Lassalle et 

al, 2000; Lee and Kesner, 2004) that indicates that dentate inactivation and dentate 

lesions disproportionately affect the acquisition of new spatial memories, rather than their 

retention. In a previous study we have formulated a mathematical model that allows 

assessing, in quantitative detail, the storage of spatial memories that could result from 

DG inputs (Cerasti and Treves, 2010). The model demonstrates that a sparse and entirely 

structure-less system of DG-CA3 projections can act effectively as a spatial random 

number generator, and impart considerable information content to distributions of CA3 

place fields, by exploiting the very sparse activity seen across populations of granule cells 

(Chawla et al, 2005, Leutgeb et al, 2007). Intriguingly, much of this content has however 

a non-spatial character, due to the non-spatial and sparse nature of the connectivity. This 

non-spatial character is quantified in our study by the likelihood with which even distant 

locations in an environment can be confused with one another, when locations are 

decoded from the activity of a limited number of CA3 units. 

Once the representation of a novel environment has been established in CA3, it is useful 

as a spatial memory if it allows the animal to reconstruct, from a partial cue, which 

environment it is in and/or its position within that environment (when both types of 

information are fully present in the inputs, there is no need for a memory system). An 



influential conceptual model posits that the CA3 recurrent network affords these abilities 

by using the DG-driven representations as continuous attractors. Among the N 

dimensions of its activity space, a continuous attractor based on N units spans a ‘chart’ of 

only 1, or 2, or 3 dimensions, which correspond to those of physical space, e.g. 2 in the 

case of a planar environment. Along the other N-2 dimensions activity is attracted 

towards the chart, corresponding to the recognition of the environment, whereas activity 

can slide effortlessly along the 2 dimensions of the chart, guided eg by path integration, 

maintaining a memory of the current position. Learning arbitrary novel environments 

implies an ability to keep multiple charts in memory, in the same network.  

Such a conceptual model is clear in principle, but is it realizable in practice? It is not yet 

understood, despite early studies (Samsonovich and McNaughton, 1997; Battaglia and 

Treves, 1998), how many multiple charts could be established and maintained by 

unsupervised synaptic plasticity on the recurrent CA3 connections. Even less, how close 

they would be to continuous attractors. Here, we use a simplified network model to show 

that what can be created by self-organization is considerably distant from a continuous 

attractor, and closer to a bundle of loosely organized discrete point-like attractors.     

Methods 

Basic Model 

The model we consider is an extended version of the one used in our previous study 

(Cerasti and Treves, 2010), where the firing rate of a CA3 pyramidal cell, ηi, was 

determined, as the one informative component, by the firing rates {β} of DG granule 



cells, which feed into it through mossy fiber (MF) connections. The model used for the 

neuron was a simple threshold-linear unit (Treves, 1990), so that the firing of the unit is 

produced by an activating current (which includes several non-informative components) 

which is compared to a threshold: 
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where g is a gain factor, while [·]
+
 equals the sum inside the brackets if positive in value, 

and zero if negative. The effect of the current threshold for activating a cell, along with 

the effect of inhibition, and other non-informative components, are summarized into a 

single subtractive term, with a mean value across CA3 cells expressed asT
~

, and a 

deviation from the mean for each particular cell i as iδ
~

, which acts as a sort of noise; 

threshold and inhibition, in fact, while influencing the mean activity of the network, are 

supposed to have a minor influence on the coding properties of the system. In the earlier 

reduced model, however, T
~

and iδ
~

 also included the effect of other cells in CA3, through 

recurrent collateral (RC) connections, and that of the perforant path, both regarded as 

unspecific inputs - this based on the assumption that information is driven into a new 

CA3 representation solely by MF inputs. In this study, instead, since we are interested in 

the ability of the RC system to retrieve and express spatial representations, we separate 

out the RC contribution, and redefine T
~

and iδ
~

 into T and iδ  - which sum the remaining 

unspecific inputs, including the perforant path, not analyzed here: 
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Connections between cells are indicated by the fixed binary matrices {c
MF

}, {c
RC

}, whose 

non-zero elements (which take value 1) represent the existence of anatomical synapses 

between two cells. The synaptic efficacies are instead indicated by the matrices of 

weights {J
MF

}, {J
RC

}, whose elements are allowed to take positive values. The notation is 

chosen to minimize differences with our previous analysis of other components of the 

hippocampal system (e.g. Treves, 1990; Kropff and Treves, 2008).  

The firing rates of the various populations are all assumed to depend on the spatial 

position x


 of the animal; and the time scale considered for evaluating the firing rate is of 

order the theta period, about a hundred msec, so the finer temporal dynamics over shorter 

time scales is neglected. Note that time is not explicitly included in the above equations, 

which only describe the end result of the dynamics at the theta scale. In support of the 

plausibility of this choice, recent evidence indicates that within each theta period only 

one spatial representation tends to be dynamically selected (Jezek et al, 2011). To be 

precise, in the simulations, we take a time step to correspond to 125ms of real time, or a 

theta period, during which the simulated rat moves 2.5 cm, thus at a speed of 20 cm/s. 

This is taken to be an average over a virtual exploratory session, familiarizing with a new 

environment. 

The storage of new representations  



The important novel ingredient that was introduced by Cerasti and Treves (2010), and 

that makes the difference from previous models of self-organizing recurrent networks, is 

a realistic description of the patterns of firing in the inputs, i.e. in the dentate gyrus. As 

the virtual rat explores the new environment, the activity )x(β j


of DG unit j is determined 

by the position x


of the animal, according to the expression: 
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The firing rate of the granule cells is then a combination of Qj Gaussian functions, 

resulting in “bumps”, or fields in the firing map of the environment, centered at random 

points jkx


. The environment is taken to have size A, and the fields are defined as all 

having the same effective size π(σf)
2
 and height β0. Qj, which indicates the multiplicity of 

fields of DG cell j, is drawn from a Poisson distribution: 
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with mean value q (and we take q = 1.7), which roughly fits the data reported by Leutgeb 

et al (2007). According to the same experimental data, we assume that only a randomly 

selected fraction pDG <<1 (here set at pDG = 0.033) of the granule cells are active in a 

given environment. Hence population activity is sparse, but the firing map of individual 

active granule units need not be sparse (it would only be sparse if q π(σf)
2
/A<<1, which 

we do not assume to be always the case). 



The activity of DG units determines the probability distribution for the firing rate of any 

given CA3 pyramidal unit, once the connectivity level between the two layers has been 

fixed:   0,1=C MF

ij with   MF

DG
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MF

ij c
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C
==CP 1 . In agreement with experimental data, 

we set C
MF

 = 50, a value in the range of the ones providing an optimal information 

transmission from DG to CA3 (Cerasti and Treves, 2010). The MF synaptic weights are 

set to be uniform in value, JJ MF

ij  , and similarly RCRC

ij JJ 0 initially. Subsequently, 

during the learning phase, RC weights are modified according to the simulated learning 

process and under the influence of the input coming from the MF connections. Following 

the simplified hypothesis that the mossy fibers carry all the information to be stored 

without contributing anything to the retrieval process, which is left to the recurrent 

collateral, MF weights are kept fixed to their initial values J; note that we have found, in 

our earlier study, that MF connections appear to be inadequate, even when associatively 

plastic, to support retrieval of spatial representation (Cerasti and Treves, 2010).  

The connectivity among CA3 cells is given by the matrix  0,1=C RC

ij with 
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RC

ij c
N

C
==CP 

3

1 , where C
RC

 = 900 in most simulations. The activity of the 

network is regulated by the constraint we impose on its mean and on its sparsity aCA3, i.e. 

the fraction of the CA3 units firing significantly at each position, which is an important 

parameter affecting memory retrieval (Treves, 1990; more precisely, 22

3 / iiCA ηη=a ). 

Here we set the sparsity of each representations as aCA3 = 0.1, in broad agreement with 

experimental data (Papp et al, 2007), and at each time step we regulate the threshold T 



accordingly, to fulfill such requirement, while keeping the mean activity 0.1=ηi  by 

adjusting the gain g. 

Recurrent collateral plasticity 

During the learning phase, the activity of CA3 is driven by DG inputs, and RC 

connections contribute through weights uniformly set to their initial value RCJ0 . While the 

virtual rat explores the environment, RC weights are allowed to change according to an 

associative “Hebbian” learning rule, such that the total change in the synaptic weights is 

given as a sum of independent terms 

 (t)Λ(t)η(t)γη=(t)ΔJ jji

RC

ij         (5) 

where ΔJij(t) indicates the variation of the connection weight between cells i and j 

occurring at a given time step t, ηi and ηj are the postsynaptic and presynaptic firing rate, 

while γ is the learning rate. This associative learning rule includes the contribution of a 

trace, Λ, of the recent past activity of the presynaptic cell, defined as 
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where τ is taken equal to 14 time steps (1750ms). RC weights are forced to be non-

negative, so they are reset to zero each time they become negative. Moreover, the total of 

the synaptic weights afferent to a single postsynaptic CA3 cell is normalized at the end of 

the learning process, so that 
RCC

=j

RC

ij =J
1

1per each CA3 cell. In words, the synaptic 



plasticity on recurrent connections allows the system to store the information about the 

current environment conveyed by mossy fiber inputs; such information is expressed in 

the form of place-like patterns of activity in CA3 units, and the Hebb-like learning rule 

strengthens the connections between units that show overlapping fields.  

Pre-wired exponential connectivity model 

In contrast to and as a control for this self-organizing connectivity, we also consider the 

case of a model network endowed with a pre-wired connectivity. The structure of 

connections is functional to the establishment of a quasi-continuous attractor surface, 

expressed by synaptic weights that follow an exponential decreasing function of the 

distance between place field centers (Tsodyks and Sejnowski, 1995; Samsonovich and 

McNaughton, 1997; Battaglia and Treves, 1998; Roudi and Treves, 2008). The weight of 

the connection between cell i and j is then written 
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if the two cells i and j both have place fields in the given environment with centers 

c

ix


and  c

jx


 (the largest field is chosen for each cell that has more than one), while Jij = 0 

if at least one of them has no place fields. We usually set here the characteristic spread of 

the connectivity to λ = 5cm, and to λ = 10cm in some control simulations, and the size of 

the environment is taken to be A=1m×1m; see below. The synaptic efficacies, in this 

control model, result from an artificial construction based on a precise and quite narrow 

exponential function; however, the distribution of place fields at the basis of such 



construction stems from the DG input, so that the place fields of CA3 units are randomly 

distributed in space, and not regularly arranged (Cerasti and Treves, 2010).  

Simulations 

The mathematical model described above was simulated with a network of typically 

45000 DG units and 1500 CA3 units (although in the “quick” multi-chart simulations 

described below the number of DG units goes down to 15000 and that of CA3 units to 

500). A virtual rat explores a continuous two dimensional space, intended to represent a 

1sqm square environment but realized as a torus, with periodic boundary conditions. For 

the numerical estimation of mutual information, the environment is discretized in a grid 

of 20×20 locations, whereas trajectories are in continuous space, but in discretized time 

steps. In each time step (of 125ms) the virtual rat moves 2.5cm in a direction similar to 

the direction of the previous time step, with a small amount of noise. To allow 

construction of a full localization matrix with good statistics, simulations are run for 

typically 400,000 time steps (nearly 35hr of virtual rat time). Given the choice of periodic 

boundary conditions, made to avoid border effects, the longest possible distance between 

any two sampling locations is equal to 14.1 grid units, or 70cm. 

Scaling up the network 

Different network sizes as used in Fig. 2 (where the number of units in the CA3 layer is 

indicated) are implemented in the simulations through the multiplication of the following 

parameters by a given factor: the total number of DG units, N
tot

DG, the total number of 

CA3 units, N
tot

CA3, the number of RC connections, C
RC

. The multiplicative factors, 



relative to the reference model with 1,500 CA3 units, are 1/3, 1, 5/3, 7/3, 10/3, 16/3. The 

connectivity between DG and CA3 stays unchanged, with always 50 mossy fibers 

projecting to a single CA3 cell. 

Threshold setting in CA3 

CA3 units fire according to Eq.(2), with the threshold T hypothesized to serve to adjust 

the sparsity aCA3 of CA3 activity to its required value. The sparsity is defined as 
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and it is set to aCA3 = 0.1. This implies that the activity of the CA3 cell population is 

under tight inhibitory control. 

Hebbian learning process 

Before and during the learning session, all recurrent connections weights take the same 

value RCJ0 ; after the learning phase, they take the values resulting from the sum of all 

modifications occurred during the session, and described by Eq.(5), with learning rate γ. 

The trajectory of the virtual rat during the learning session is a random path, extended 

over a time long enough for it to effectively visit repeatedly all possible locations in 

space: 10000 time steps to cover 400 locations (in each time step the rat is made to move 

half a grid unit). This is taken to correspond to about 20 min of exploration in real time. 

Such synaptic modifications start to have an effect on the CA3 firing rate only at the end 

of the learning session, when the RC weights are updated to their new values. In the 



“quick” multi-chart simulations below, the learning rate was sped up by a factor 20, γ = 

0.002: in those simulations, each learning session (per each learned environment, or 

chart) lasted 3000 time steps, with the higher learning rate intended to partially 

compensate for the fewer time steps. 

Turning off the DG input 

For simulations aimed at describing attractor properties, in each position of the virtual rat 

activity is allowed to reverberate for 15 iterations; with a full DG input during the first 

one, an input reduced to 1/3 during the second, and to 0 for the remaining 13 time steps. 

The final position is then inferred by comparing the population vector in the last iteration, 

i.e. the vector with components (η1(t),…,ηi,(t)…,ηN(t)) with the set of all templates, which 

are the population vectors corresponding to 400 possible locations in space (on a the 

20×20 grid), measured when the DG input is on. The position relative to the template that 

is correlated the most with the actual population vector is taken to be the final position 

resulting from attractor dynamics elicited by the initial spatial input. Most correlated 

means having the smallest Euclidean vector distance. For simulations aimed at assessing 

the storage of multiple environments, for each position of the virtual rat the activity 

reverberates for only 5 iterations, to save CPU time; with the full DG input during the 

first 2, reduced to 1/3 on the third, and to 0 for the remaining 2 iterations.  

Note that we always probe the network, in this study, by first presenting it with a full cue. 

Of course, the real memory capabilities of the CA3 network should be appreciated also 

by providing it with partial cues, so that information is actually retrieved from the 

network and not merely relayed onwards. This can be the subject of future studies. 



Decoding procedure and information extraction 

At each time step, the firing vector of a sample of CA3 units is compared to each of the 

“template” vectors recorded, in previous test trials, at each position in the 20×20 grid, for 

the same sample of units. The position of the closest template, in the Euclidean distance 

sense, is taken to be the decoded position at that time step, for that sample. At the last 

iteration, this is taken to be the “final” position, reached through network dynamics, when 

the virtual rat is in a fixed position, corresponding to the “initial” one conveyed to the 

CA3 network by the mossy fiber inputs, as illustrated also in Fig. 2. This procedure has 

been termed maximum likelihood Euclidean distance decoding (Rolls et al, 1997). The 

frequency of each pair of decoded and real positions are compiled in a so-called 

“confusion matrix”, or localization matrix, that reflects the ensemble of conditional 

probabilities   )x|ηP( i


for that set of units. All information measures from simulations 

are obtained constructing the full localization matrix )'x,xQ(


(Cerasti and Treves, 2010). 

If the square environment is discretized into 20×20 spatial bins, this is a large 400×400 

matrix, which requires of order 160,000 decoding events to be effectively sampled. We 

run simulations with trajectories of 400,000 steps. In all the information measures we 

report, we have also corrected for the limited sampling bias, as discussed by Treves and 

Panzeri (1995). In our case of spatial information, the bias is essentially determined by 

the spatial binning we used (20×20) and by the decoding method (Panzeri et al, 1999). 

Should decoding “work” in a perfect manner, in the sense of always detecting the correct 

position in space of the virtual rat, the confusion matrix would be the identity matrix. 

From the confusion matrix obtained at the end of the simulation, the amount of 

information is extracted, and plotted versus the number of CA3 units present in the 



sample. We average extensively over CA3 samples, as there are large fluctuations from 

sample to sample, i.e. for each given number of CA3 units we randomly pick several 

different groups of CA3 units and then average the mutual information values obtained. 

Fitting  

We fit the information curves obtained in simulations to exponentially saturating curves 

as a function of N, in order to get the values of the two most relevant parameters that 

describe their shape: the initial slope I1 (i.e. the average information conveyed by the 

activity of individual units) and the total amount of information I∞ (i.e. the asymptotic 

saturation value). The function we used for the fit is  
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In most cases the fit was in excellent agreement with individual data points, as expected 

on the basis of previous analyses (Samengo and Treves, 2001). 

Results 

We simulate a network of CA3 units, receiving input from DG units with multiple, 

disorderly arranged place fields. Recurrent connections are inserted and contribute to 

network dynamics either through a “self-organized” weight distribution resulting from an 

associative learning process or, as a control, through a “pre-wired” distribution manually 

set by using an exponential function of the place field distance, between pairs of CA3 

units with a place field (in some analyses, we shall consider also, as further controls, 

recurrent weights fixed at their uniform initial value, or reshuffled one with the other). 



The dynamics is analyzed when the input coming from the DG units is either on, to 

characterize externally driven representations, or turned off, to characterize instead 

memory-driven “attractors”. The noise level is kept very low (δ=0.002) in order to probe 

the microstructure of the spatial attractors, and is then raised (δ=0.1) to test their 

robustness. Parameters for the reference network are listed in Table 1. 

[Table 1 approx. here] 

[Figure 1 about here.] 

Self-organized 2D attractors are reasonably precise, but not accurate 

Can the recurrent network in CA3 maintain a precise memory of the position in space of 

the animal, over realistic time scales, in the absence of afferent inputs? Neural activity in 

our CA3 model does indeed maintain a localized character, for quite some time after DG 

inputs are turned off, as illustrated by the examples in Fig. 1. The Figure however 

indicates that the spatial code expressed by the model is rather far from the idealized 

notion of a smooth continuous attractor, which can sustain a distinct pattern of activity as 

a bell-shaped bump in each location of the environment. The control case of a pre-wired, 

finely tuned exponential connectivity, with DG inputs turned off, seems reasonably 

smooth, while the self-organized bump in Fig. 1 appears rather noisy. Bumps are in fact 

equally noisy also when the DG inputs are still on (not shown). Further, the example in 

the right panel indicates that the position of the bump drifts considerably when turning 

off the input. The idealized notion can only be crudely approximated with a network of 

finite size (Tsodyks and Sejnowski, 1995; Hamaguchi and Hatchett, 2006; Papp et al, 



2007; Roudi and Treves, 2008). Are the irregularity and the drift merely finite size 

effects, due to the limited size of our simulations, which disappear for networks of real-

brain size? Fig.2 shows that the imprecision and the tendency to drift are reduced when 

the network is larger. To quantify the exact extent to which recurrent network dynamics 

approach the ideal notion of a continuous attractor, we study how the effective spatial 

resolution and spatial memory accuracy of the code change, when increasing in discrete 

steps the number of units in both the DG and the CA3 population, and the RC 

connectivity. Different network sizes are indicated in Fig. 2 by the number of units in the 

CA3 layer (see Methods).  

[Figure 2 about here.] 

Fig. 2 (bottom left) quantifies spatial resolution by showing the number Res of different 

final positions obtained when the input is turned off, starting the network in 100 distinct 

initial positions. We can see that, already with 8000 units, the spatial resolution of the 

pre-wired system can be quite high, failing to represent only about 5% of the initial 

locations, in the sense that the network reaches 95 distinct final positions. Note that the 

100 initial positions are always taken as the positions at the vertices of a 10×10 grid, 

embedded in the simulated 100×100cm environment at every fourth node of the finer 

20×20 grid used to produce population vector templates for decoding; and note that even 

distinct final positions do not, in general, coincide with the initial ones. As shown in Fig. 

2 (bottom left), the spatial resolution of the attractor increases as the population of model 

CA3 neurons gets larger, both with pre-wired and with self-organized connectivity. This 

increase is intuitive; in fact with about a third of the CA3 cells active in the given 



environment, as a result of the DG input (Cerasti and Treves, 2010), an increase in 

population size implies an increase in the number of CA3 place fields randomly 

distributed over the environment. As a consequence, the firing level of units in the 

activity packet, determined by RC weights, would approximate better a smooth decrease 

with distance from the center (necessary for a truly continuous attractor, Tsodyks and 

Sejnowski, 1995) if a larger number of fields is available. In the case of the smallest 

network in Fig. 2 (bottom left), 500 units, indeed the poor resolution is due to the fact that 

only around 150 place field are present to cover the environment. The network with pre-

wired and finely tuned (λ=1) connectivity appears to have only marginally better 

resolution, across sizes, than the self-organized one, which shows in turn slightly better 

resolution than the pre-wired but more coarsely tuned network (λ=2). The Figure also 

shows, as guides to the eye, the straight lines which on the semi-logarithmic scale of the 

graph correspond to the trends  

 ,       (10) 

where the Res data-points for the self-organized network are reasonably well fit by taking 

an effective λ=1.4. It is not clear at the stage whether these lines are just guides to the 

eye, or whether they really describe the scaling of finite size effects; this issue is left for 

future analysis. What they indicate is the size of the network for which Res~100, that is, 

how large the CA3 network has to be, not to display the imprecision expressed by the 

collapsing together of the bumps of activity originated on a 10×10 grid of initial 

positions. We can extrapolate NCA3~13,500 for the pre-wired network with finely tuned 

connectivity (λ=1); NCA3~27,000 with coarser connectivity (λ=2); and NCA3~18,900 with 



self-organized connectivity. Although approximately derived, such values are well below 

the size of the CA3 network in the rat, suggesting that lack of precision in representing 

distinct position may be a minor concern in the real rat brain.   

To further test this hypothesis, we can also quantify fluctuations in the density of final 

positions, that is, the degree of clustering in their distribution, Clu, by calculating a 

weighted average for each pair k, l of final positions, and for each network realization, as 

follows 
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        (11) 

where S is the total number of locations, 100 in our case. The Clu measure takes its 

minimum (optimal) value Clu~0.00075 when the final positions are uniformly distributed 

in the environment, and its maximal (worst) value Clu=1 when they are all clustered 

together. The values taken in our CA3 simulations are shown in Fig. 2 (bottom centre), 

where the Clu value for the initial positions (the minimum one) is also indicated as a 

reference. The degree of clustering is much higher than the minimum reached for initial 

positions, indicating that several pairs of final positions do collapse onto each other or 

nearly so, yielding large contributions to the sum in Eq. (6). The Clu measure thus 

quantifies the impression that final locations are not well distributed, and that the quasi-

continuous attractor is locally distorted and “wrinkled”. One sees that the distortion is 

progressively reduced, however, with increasing network size. Again, one can 

approximately fit to the data-points curves, which in this case describe the trends 

      (12) 



where for the self-organized network we can again take an effective value λ=1.4. Again, 

we see that the pre-wired and finely tuned network leads to an attractor only marginally 

smoother than the self-organized one, which in turn is smoother than the more coarsely 

tuned pre-wired network. Extrapolating the curves to the optimal value Clu~0.00075, we 

can extract approximate network sizes beyond which clustering effects disappear. They 

turn out to be NCA3~16,000 for the pre-wired network with finely tuned connectivity 

(λ=1); NCA3~32,000 with coarser connectivity (λ=2); and NCA3~22,500 with self-

organized connectivity. These values are similar, although somewhat larger, than those 

extrapolated from the resolution measure, again suggesting that for a real life rodent 

hippocampus spatial precision is not a major limitation. The network pre-wired with 

more coarsely tuned connections extending over double the distance (λ=2) is significantly 

poorer, both in spatial resolution and in the degree of undesirable clustering, than the self-

organized network (Fig. 2, bottom left and centre), indicating that the latter self-organizes 

rather precisely, and that the superiority of the control, exponentially pre-wired 

connections only arises due to their very finely tuned spatial coding.  

Both the resolution and clustering measures of Fig. 2 indicate a somewhat granular, but 

locally precise spatial code, able to discriminate neighboring position to a reasonable 

degree. They do not, however, tell us much about the global metric of the attractor 

surface, that is, whether the distance between any two real positions is reflected in the 

distance of the corresponding attractor representations. Such metric is distorted by bump 

drift. To graphically visualize what happens to a bump, we can look at Fig. 1 (right); for 

each initial position, it is possible to follow the drift of the bump resulting from the 

turning off of the mossy fiber input and we can get an idea of the distortion the quasi-



continuous attractor undergoes. This is expressed in Fig. 2 (bottom right), where the 

mean distance <Dis> is shown between initial positions and positions reached after 10 

iterations. Note that for a given network size distance <Dis> tends to grow, 

approximately with the square root of the time elapsed since turning off the inputs (not 

shown), so those shown are not to be taken as the distances to any final, steady state 

position of the bump. Matching the trend of the spatial resolution, the average of the 

displacement drops to a value around 5cm (one grid unit) for the largest network, but 

only for pre-wired connectivity with λ=1. With λ=2 <Dis> is much larger, and in the case 

of the self-organized connectivity resulting from the simulated Hebbian process, the 

mean displacement is larger still, and not abated below about 16cm (≈3 grid units), even 

for relatively large networks (the largest size was not used, because of the CPU time 

required). One can use in this case as guides to the eyes the logarithmic trends  

 ,       (13) 

where one should note that the tuning width of the connectivity appears squared, λ
2
, and 

still in order to fit the data for the self-organized network one has to use the larger 

effective value λ=5.0. This leads to much larger extrapolated network sizes, beyond 

which global metric distortion vanishes, that is <Dis> ~ 0. One finds NCA3~ 58,800 for the 

pre-wired network with finely tuned connectivity (λ=1); NCA3~235,000 with coarser 

connectivity (λ=2); and NCA3~1,470,000 with self-organized connectivity. The final 

positions in the self-organized network are considerably more displaced than those in the 

networks pre-wired with either λ value, and their mean displacement does not seem to 

decrease much with size (Fig. 2, bottom right), not rapidly enough, at least, to become 



irrelevant to a real-life sized rodent CA3 network of a few hundred thousand units. This 

suggests therefore that, with Hebbian learning, the recurrent network self-organizes in a 

virtual space of its own, which maps into real space in a much more indirect, less 

accurate way than in the case of a pre-wired network, even though the mapping can be 

similarly precise. This global distortion is illustrated in Fig.2 (top right), which shows 

that to nearby locations in real space correspond somewhat more distant bumps on the 

attractor, but to distant positions in space correspond much closer bumps, on average, on 

the attractor. The effect stems from the toroidal geometry, but it indicates that the global 

distortion is alleviated very slowly, when increasing the size of the network. Further, 

these results suggest that attractor drift may be an unavoidable feature of self-organized 

attractors.   

Recurrent connections can preserve part of the input information 

The impression, conveyed by the bottom panels in Fig. 2, of similarly precise spatial 

attractor codes expressed by networks with exponential weights and with weights shaped 

by learning, is confirmed by information measures. They are extracted from simulations, 

as described in the Appendix (and see Cerasti and Treves, 2010), by decoding sub-

samples of different sizes of CA3 units, randomly picked from the network, resulting in 

trends like those shown in Fig.3 (top left). Those trends are fitted as detailed in Eq.(9), 

yielding estimates of the average information I1 conveyed by one unit, and of the 

information I∞ conveyed by the entire population. These estimates confirm that pre-wired 

networks do not encode a more informative map than self-organized ones, at least when 

fast noise (fast in the sense that it changes from one theta cycle to the next) is effectively 



absent (i.e. of the order of δ=0.002, the value used in Fig.1-2). The bottom row of Fig. 3 

shows, in fact, that the mutual information encoded by an exponential pre-wired 

connectivity, with inputs turned off (cyan lines) is similar the one encoded by a network 

with Hebbian weights (purple lines). It turns out, however, to be slightly more resistant to 

noise, so for larger noise values the pre-wired network is somewhat more informative 

(compare the cyan line with the purple line in the bottom panels of Fig. 3).  

A discrepancy then arises between what we might call the precision and the accuracy of 

self-organized spatial codes. The information results extend to a wider noise range the 

indication obtained with the resolution and clustering measures of Fig. 2, pointing at the 

reasonably precise spatial codes that can emerge from self-organizing weights. Their 

precision is comparable to that of the ones artificially wired with exact exponential 

connectivity. In contrast, the analysis of the distance between initial and final positions, 

i.e., the mean displacement in Fig. 2, indicates that self-organized codes are considerably 

less accurate, in mapping real space, than the pre-wired ones. In other words, distinct 

spatial positions are resolved to a similar degree for both codes, but while exponential 

connectivity minimizes drift, thus preserving distances, the self-organized one does not. 

The discrepancy can be conceptualized by stating that the attractor “manifold” 

established by Hebbian learning has a metric of its own, different from the one of real 

space, and much closer in nature, instead, to the rowdy metric established by DG inputs. 

Fig. 3 (top right) in fact shows that our measure of displacement, if computed by 

decoding small ensembles of only 10 units, yields substantial values already for the 

spatial code produced by DG inputs alone. Adding reverberation along recurrent 

connections does not alter <Dis> significantly. Once DG inputs are turned off, while a 



finely tuned prewired connectivity minimizes further drift by regularizing the attractor 

surface (not shown, but see Fig.2, bottom right), the self-organized connectivity adds 

substantial drift of its own (the higher purple bars in Fig3, bottom right). An accurate 

metric map, however, is not necessary to maintain spatial knowledge in the network, with 

the result that the spatial information stored by the self-organized weights is not 

necessarily lower than with precisely wired weights. Such insight into the properties of 

these representations can be substantiated by applying information measures.  

In terms of these measures, Fig.3 further quantifies, in a network with self-organized 

recurrent connectivity, how different connections contribute to the amount of spatial 

information present in limited samples of CA3 units. Three different conditions can be 

contrasted. In the first, MF inputs are active, while RC activity enters only as random 

noise, as in Cerasti and Treves (2010), see Table 1; in the second, recurrent connections 

are added, with weights resulting from the learning process, and MF inputs are kept 

active; in the third condition, information is extracted from the CA3 population in the 

absence of DG inputs, from the self-organized attractor.  

[Figure 3 about here.] 

Recurrent collateral activity seems not to add information to the CA3 representation, 

when the input coming from the mossy fibers is fully available, as shown in Fig. 3 

(bottom row; cp. blue and green data, for the self-organized network). The same holds for 

the pre-wired network (not shown). One has to take into account the relative strength of 

the two inputs arriving to a CA3 cell: in fact, in the simulations shown here, the mossy 

fibers weights are much stronger than RC ones, with a total mean strength 5 times larger 



(averaged over the whole environment). However, a similar result holds even when the 

strength of RC weights is increased as much as to equal total mean MF strength (not 

shown). When the input is turned off, the scenario changes and RC activity is crucial. 

Recurrent connections are, in fact, able to convey information about the stored spatial 

representation, as it is clear from Fig. 3 (bottom row), provided the noise is not too high.  

Considering the effect of learning strength, for a fixed level of noise, Fig. 3 (top left) 

shows the corresponding information curves plotted versus CA3 sample size, in the case 

of δ=0.1. One can see the modest increase in the information due to a much higher 

learning rate, γ=0.002, and to a much higher number of time steps, 20×10000, in the 

model learning process. This indicates that protracted or intense learning (in terms of 

training time or learning rate) offers diminishing returns: most of the information 

structuring the attractor is acquired rapidly, even with minimal learning rates. The effect 

of the learning process on CA3 place fields can be seen in Fig. 4, where the firing maps 

in absence of MF inputs can be contrasted with the ones driven by them, with δ=0.002. 

When MF inputs are turned off, RC activity generates several new fields or amplifies 

existing ones, and suppresses others already present, usually the weaker ones. The 

fraction of CA3 units with at least one place field increases significantly, whereas the 

proportion of these with 2 or more fields does not change (Fig.4, bottom right). This 

effect could be tested experimentally in the real system. 

[Figure 4 about here.] 

Multiple charts leave residual spatial information 

Having confirmed the ability of the RC network to retain spatial information about a 

given environment, we study how such information is affected by the storage of multiple 



“charts”, i.e. representations of different environments. We allow the network, which in 

this case is comprised of 500 CA3 units, to store a different number of charts, each for an 

environment explored by the virtual rat for 3000 time steps. First, we consider the control 

case of exponential pre-wired efficacies (Fig.5, left and center). In this case, all charts are 

encoded with equal strength. Fig.5 (left) shows that a network of such limited size is 

overburdened already by the storage (i.e., the pre-wiring) of two charts: the mutual 

information that can be extracted about each from a given cell sample is below what can 

be extracted if only one chart is stored on the weights. There is a further decrease with the 

storage of four charts and, with six, the information in each of them is not more than what 

can be extracted about a chart that has never been stored. There is indeed significant 

information present in the network about positions in an environment that was not 

experienced in the simulations, and the amount becomes considerable when the noise 

level is low (Fig.5, center). This apparently counterintuitive finding can be understood 

considering that information is not sensitive to the logic of the mapping between actual 

position and position decoded from population activity, but solely to the precision of such 

mapping; it turns out, from our measures, that a precise mapping can be “inherited” from 

other charts.  

This “residual” information is not due to specific encoding on the weights but to the 

disorder (or inhomogeneity) created in the network by cumulative encoding of other 

information of the same spatial nature. In fact, the information available when weights 

are set to their initial uniform values and no storage occurs at all is essentially at zero (not 

shown). Is any inhomogeneity in the weights sufficient to produce residual information, 

or is the weight distribution resulting from the storage of a spatial representation in any 



way special? To address this question, we reshuffled the weights produced by the storage 

of 6 charts, and again measured the amount of spatial information retrieved, either about 

that chart or about another, non-stored chart. The result is the same, and the 

corresponding curve (orange in Fig.5, left and center) is below the amount of residual 

information, though for low values of noise (central panel) considerably above the 

vanishing amount present with uniform weights. This indicates that a component of the 

residual information is merely due to the roughness of activity propagation in a recurrent 

network with generically inhomogeneous synaptic weights, while another component is 

due to the special spatial character of the inhomogeneity, due in turn to the storage of 

other charts, and not just to a sort of white noise. The difference between the two 

components probably lies in the variability of the distribution of weights presynaptic to 

any given unit, a point that requires further analysis.  

These observations apply also to the case of self-organized representations. In this case, 

we run several simulations in which the network stores (self-organizes) representations of 

four different environments one after the other, and the degree of encoding is tested at the 

end for all charts, through decoding. The same length of exploration is used, but with 

different learning rates (Fig.5, right). Obviously with such a procedure, the first chart to 

be stored is partially overwritten by the storage of successive charts; so that the amount 

of information about it is well below what can be retrieved about the last chart to be 

stored, especially with a high learning rate. For both, the encoding does not become 

stronger by using a learning rate above the intermediate value we used,  γ = 0.0002, and 

information about the first and last chart “stabilizes” at amounts below and above their 

average, which is roughly what can be retrieved from a pre-wired network (the horizontal 



line in Fig.5, right). This is the spatial equivalent of one-shot learning in episodic 

memory: virtually all there is to learn can be acquired with small modifications of the 

connection weights, and there is almost no return from more intense learning.  

Interestingly, information about an environment that was never experienced, what we 

have called residual information, continues to grow a bit further with an increase in the 

learning rate, and approaches the amount relative to the first chart encoded for γ = 

0.00065. From this rate of learning onward, the storage capacity of the network, with our 

parameters, is below 4 charts, and what is present about the first chart, which has been all 

but “forgotten”, is just the residual information, which is however very substantial (when 

noise is low, δ=0.002). . 

[Figure 5 about here.] 

This finding is broadly consistent with the notion, put forward over several years by 

Bruce McNaughton, that spatial charts are somehow prewired in the hippocampal system, 

and that spatial experience merely serves to associate locations in a pre-wired chart with 

configurations of sensory cues available in that location (Colgin et al, 2010). In 

McNaughton’s view, the pre-existing chart is expressed by the path-integration system, 

which may well operate upstream of the hippocampus, e.g. in medial entorhinal cortex. 

Our model is not in conflict with this view, as it makes no distinction, in fact, between 

inputs to CA3 that relay path integration information vs. sensory information, e.g. 

between those on the medial vs. lateral perforant path that relay inputs from the medial 

and lateral entorhinal cortex to both DG and CA3. There is instead the distinction 

between (DG) inputs and recurrent connections. Still, the experimental evidence for the 



existence of prewired charts can be interpreted as also consistent with the considerable 

spatial information that, in a novel environment, may be available in recurrent weights 

modified by the charts of other environments – what we see in the model and have called 

residual information.  

Context information is also retrieved and partially maintained in the attractor 

As we have discussed elsewhere (Stella et al, 2012), the specific contribution of the CA3 

network can be argued to be in the formation of memories for specific spatio-temporal 

contexts, more than in retaining spatial information about a single context. So far we have 

quantified the amount of spatial information in one chart, either the only one or one 

among several stored concurrently, but one can also ask how much information the 

network can produce about which chart best matches the current environment, 

irrespective of exact position within it. Can CA3 tell a real rat not just where it is in one 

context, but also which context it is, among several competing possibilities? Can it retain 

this information in memory, and reactivate it from partial sensory cues? The question is 

made particularly relevant by the observation that the remarkable spatial code observed in 

the medial entorhinal cortex, expressed by grid cells, while providing exquisitely fine 

information about the position of the animal (Burak and Fiete, 2009) appears unable to 

discriminate between contexts (Fyhn et al, 2007).  

We have addressed this question, again, by simulating the storage of 4 distinct charts, 

obtained by globally remapping the DG activity the drives the establishment of CA3 

charts in the model, and again assessing both the representations activated by the inputs 



and those remaining active when the inputs are turned off. Self-organized charts can 

again be compared with those manually pre-wired.  

[Figure 6 about here.] 

Fig.6 (left) shows that the model CA3 network can easily discriminate between 4 

different contexts, even based on the activity of a limited sample of units, when DG 

inputs are still on. The discriminative capacity reaches close to the maximal value of 2 

bits, irrespective of the noise level. When the inputs are turned off, the amount of retained 

context information becomes very sensitive to the noise level, and is minimal for 

relatively higher levels of noise (not shown). The interesting observation is that, for a 

given noise level, context information grows with the learning rate, which is intuitive, but 

only up to δ=0.0002; beyond that learning rate, less information can be retained the 

higher the learning rate. The three sets of mauve datapoints in Fig.6 (left) correspond to 

the three larger learning rates of Fig.5: δ=0.0002, 0.00065 and 0.002. Thus multiplying 

the learning rate by 10, which brought no benefit to spatial information (Fig.5), actually 

causes a loss of context information (Fig.6). This is due to different charts collapsing onto 

each other, to some degree, so that individual fragments of one “stick” to those of 

another, and context discrimination is impaired. The model therefore suggests that self-

organization cannot be “pushed” beyond its own limits: rather than smoothing out the 

granularity of the charts (which is there even when they are pre-wired) or stretching out 

their global metric (which is more distorted in self-organized than in pre-wired charts) 

stronger self-organizations leads to gluing the charts with each other, like overcooked 

fettuccine.   



Fig.6 (center) shows which context is decoded from the activity of a sample of 10 units at 

successive positions along 300 time steps of a sample trajectory (when DG inputs are 

turned off): although the correct context is decoded more frequently than the other 3, the 

relative proportions are comparable, which makes the available context information low.  

Fig.6 (right) shows one reason for such poor decoding performance: the overall activity 

of those 10 units, even when summed together, is sparse, in each of the 4 contexts. At 

many positions, there are no cells in the sample active, in a particular context. The other 

reason, of course, is related to the drift analysed previously. Interestingly, a pre-wired 

network appears to retain much less context information than a self-organized one, even 

when noise is low. This stands in contrast to the more accurate representation of spatial 

position expressed by the pre-wired network, and may be due to the way the pre-wiring 

procedure prevents the spontaneous development of context specific features of the 

spatial code.        

Discussion  

The idealized notion of a continuous 2D attractor, a “chart”, has been an important guide 

for theories of how the hippocampus operates in spatial memory (Samsonovich and 

McNaughton, 1997; Stringer et al, 2002; Stringer and Rolls, 2002; McNaughton et al, 

2006). Simulating the formation of such charts in CA3, we find that what emerges is 

considerably distant from the idealized concept. Rather than “flaws” in the representation 

expressed by the network, the discrepancies from the ideal 2D spatial attractor point, in 

our view, at what CA3 is really meant to do: not merely recode spatial coordinates, but 

embed (some) spatial information into new memory representations.  



We have compared a model network with self-organized connectivity with the control 

case of a network pre-wired with a connectivity dependent on the exact distance among 

the place fields  produced by a randomizing dentate input, and focused on three distinct 

aspects to characterize CA3 attractors: their spatial precision; their accuracy; their 

informative content relative to one or more environments. 

Networks of finite size cannot express a truly smooth continuous attractor manifold, but 

rather a quasi-continuous collection of discrete attractor points, characterized, in 

statistical physics parlance, as distinct valleys of the free-energy landscape. Left to their 

own recurrent dynamics, networks cannot settle into a pattern of activity that represents 

any possible position in space, but only a discrete, “granular” subset, leading to a 

decrease in spatial resolution; when driven by afferent inputs, the continuity is retrieved 

(Kali and Dayan, 2000). This “roughness of the free-energy”, or imprecision in 

representing local continuity, had first been noted by Tsodyks and Sejnowski (1995), in a 

pre-wired one-dimensional model of a spatial attractor. Like Brunel and Trullier (1998), 

we find that also two-dimensional attractors “suffer” from these finite size effects; 

however, in both cases of pre-wired and self-organized networks, the roughness is seen to 

essentially disappear when reaching the size of a real rodent hippocampus (Fig.2).  

Moreover, the self-organization process turns out to be quite rapid, effectively the spatial 

equivalent to one-shot learning in episodic memory: Fig.3 (top left) shows that more 

intense training brings very limited added value.  

A pre-wired network with place fields regularly arranged on a grid would be much 

smoother, just like the entorhinal grid network, which is thought to express a single 



spatial representation (Fyhn et al, 2007) and to gradually smoothen it during development 

(McNaughton et al, 2006; Kropff and Treves, 2008). Such regular arrangement is 

however an artificial condition, particularly in the CA3 region, where providing strong, 

sparse and necessarily random inputs appears to be the raison d’être of the dentate gyrus. 

Kali and Dayan (2000) consider a pre-wired and a self-organizing recurrent CA3 network 

like ours, and they also come to the conclusion that self-organized attractor manifolds can 

be similarly smooth as those determined by suitable pre-wired connectivity.  

A second, conceptually distinct discrepancy from the idealized notion of a true 

representation of space is in the global geometry of the attractor manifold. This can be 

quantified indirectly by measuring the mean drift, i.e. the displacement, of the position 

decoded by the activity in the network from the position provided as input, which can be 

referred to as global distortion or metric distortion,. In this respect, a self-organized 

attractor is considerably more distorted than a pre-wired one. Kali and Dayan (2000) 

discuss how the global distortion resulting from grossly uneven sampling of the 

environment can be effectively removed by modulating synaptic changes by a familiarity 

factor, which essentially reduces learning in areas that have been oversampled by the real 

or the virtual rat – typically, those at the center of the arena. The point they make is 

susceptible of experimental validation. In our simulation paradigm, however, the periodic 

boundary conditions do not give rise to gross oversampling of particular areas, so the 

global distortion in the attractor representation does not arise from that, but from random 

fluctuations. We find that the effect of such random fluctuations is not abated, as it might 

have been expected, in large self-organizing networks, which remain much more globally 

distorted than pre-wired networks in their spatial representations. Real-life networks may 



then suffer from a degree of metric distortion similar to the one observed here in a 

reduced model, although it is possible that the distortion be attenuated by additional 

mechanisms not considered here, such as short-term gain enhancement or synaptic 

facilitation (Roudi and Treves, 2008, Itskov et al, 2011). It could well be, as recently 

hypothesized by Romani and Tsodyks (2010), that the tendency to drift is expressed also 

as a propensity to replay and even preplay spatial trajectories, as observed in many 

experiments (e.g. Wilson and McNaughton, 1994; Foster and Wilson, 2006; Diba and 

Buzsáki, 2007; Gupta et al, 2010; Dragoi and Tonegawa, 2011; Karlsson and Frank, 

2009). Replay would not reflect purposeful “thoughts” but rather uncontrolled drift along 

a randomly self-organized chart, whether relative to the current environment or residual 

from a previous environment. The difficulty with which (rapidly) self-organized 

representations come to reproduce global geometry contrasts with the beautiful, long-

distance encoding of geometry by entorhinal grid cells (Hafting et al, 2005) which, again, 

presumably requires long developmental times to be established (Kropff and Treves, 

2008). Once more, it appears how the CA3 network is not ideally suited to compute 

spatial relations per se, but rather to encode in memory spatial relations already computed 

upstream.  

The spatial code expressed in the attractor is made inaccurate anyway by sampling only a 

small fragment of the entire population vector, as is the case with experimental 

recordings (Wilson and McNaughton, 1993). In fact, Fig. 3 shows that populations of 

limited size are already quite inaccurate in the presence of the inputs, so that turning off 

the inputs, and letting activity to be sustained by the attractor, brings about only an 

additional degradation (e.g. doubling the mean displacement). In the light of our context 



information analysis, inaccurate spatial codes appear as a small price to pay in order to 

form arbitrary episodic memories with spatial content. In our simplified model, non-

spatial aspects of such memories are not included explicitly, but still their episodic 

character emerges indirectly from the difference between the full and simplified 

localization matrices, the “dark information” discussed by Cerasti and Treves (2010). 

The third dimension of discrepancy from the idealized notion requires, to be appreciated, 

information measures. Compared to the control, pre-wired network, Fig. 3 show that a 

single environment can be encoded, in information terms, just as well with a self-

organizing chart. Ideally, however, it should be possible to store multiple independent 

spatial attractors in the same recurrent network, to represent distinct environments with 

complete remapping from one to the other (Leutgeb et al, 2005), up to a capacity limit 

which has been studied analytically by Battaglia and Treves (1998). In our study, with the 

parameters we use and with the extra disorder of the irregular arrangement of the DG-

induced fields, it appears that the weight modifications that encode a new chart, 

comprised of the cumulative granular “memory” of many different positions in the 

environment, are sufficient to almost wash out the information about a different 

environment learned in a previous session, even the one before. We say “almost”, 

because of a paradoxical counter-effect. We find, in fact, that the network still encodes 

residual information about charts it has effectively “forgotten”, and even about charts it 

has never stored in memory. Such “residual information” is limited when the noise, i.e. 

the temporal variability, is high (the left panel of Fig.5), but still it has to be taken into 

account when using decoding procedures also with real data. This effect can be explained 

by considering that, unlike temporal variability (noise), fixed or “quenched” spatial 



variability (disorder) causes reproducibility, which counter-intuitively confers 

information also to a random neuronal code. A component of this information even 

survives the reshuffling of all the synaptic weights.  

Our overall conclusion is that, as a memory network, CA3 is clumsy at handling spatial 

information. If this runs against the intuition accrued from experiments, it may be 

because many of those experiments do not really probe memory function: they assess 

CA3 activity largely with “the inputs on”. It is unclear to what extent DG inputs are 

reduced, during free exploration and foraging, even at their lowest theta phase. 

Nevertheless, it is important to analyze attractor dynamics as a function of theta phase, as 

in the study revealing brief, theta-paced “flickering” memory dynamics in CA3 (Jezek et 

al, 2011). Even more important is to look at the information putatively retrieved from 

CA3 during sharp wave ripples (SWR). SWR events are thought to originate in CA3, 

presumably with no need for the dentate to trigger them with spatial information. Their 

statistical character is very different from what is observed during theta-modulated states, 

and they may have to do more with long-term memory formation elsewhere than with the 

active short-term retention of spatial information in hippocampal networks (Hoffman et 

al, 2007). They may be suited, therefore, to characterize attractors formed in CA3 during 

theta-modulated spatial exploration.  
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Table  

 
PARAMETER SYMBOL STANDARD VALUE 

# of DG units in the network N
tot

DG 45000 

# of CA3 units in the network N
tot

CA3 1500 

probability a DG unit is active in one 

environment 
pDG 0.033 

 

# of DG inputs to a CA3 unit C
MF

 50 

# of RC inputs to a CA3 unit C
RC

 0.6 × N
tot

CA3 

mean # of fields per active DG unit q 1.7 

mean # of fields activating a CA3 unit μ C
MF

 × pDG × q = 2.833 

strength of MF inputs J 1 ( or 2.833 / μ ) 
initial strength of RC inputs J

RC
0 1 / C

MF
 

noise affecting CA3 activity δ 0.002  

( in units in which β0 = 2.02 ) 

sparsity of CA3 activity aCA3 0.1 

learning rate γ 0.0001 

temporal trace window τ 14 time steps (or 1750 msec) 

 

Table 1. Parameters. Values used in the standard version of the model with recurrent 

collaterals. 



Figures and  Legends. 

 

Figure 1. Bumps of activity are rough, and tend to drift. Activity packets showing the 

localization of the firing pattern, when the virtual rat is in the position of coordinates 

(x,y)=(55,45). The firing rates of all the units active in the given environment, among 

NCA3=1500 units, are plotted in the position of their (main) place field centers, when 

noise is very low (δ=0.002). The attractor bump in a network with connectivity pre-wired 

following an exponential function (left) is much smoother than in a network with 

connectivity resulting from a Hebbian self-organizing process (right), both expressed 

when the DG input is turned off. The trajectory of the activity bump over 16 iterations is 

outlined for each initial position (the iterations are taken to be included within one 125 

msec period during theta, and within more rapid dynamics during sharp wave-ripple 

events). The example is with pre-wired exponential connectivity. 



 

Figure 2. Finite size effects eventually vanish, but the tendency to drift persists. The 

bump tends to drift from any initial position in the environment, encoded in the inputs, to 

the final position decoded from the complete CA3 activity vector in the self-sustaining 

attractor, even when noise is very low (δ=0.002). Each initial position (blue square) is 

connected to its final position (yellow circle) through a black line, showing strong drift of 

the bump as a result of turning off DG inputs, in a network of 1500 units with 

connectivity self-organized through Hebbian learning (top left), and much weaker drift in 

a network of 8000 units with pre-wired exponential connectivity and spread λ = 1 (right). 

Each of the two panels reports the number of distinct final positions Res, the degree of 

clustering Clu and the mean displacement from initial to final position <Dis>, whose 

average values over simulations with different network sizes are reported in the bottom 

row. Top right: The average distance between final positions corresponding to a given 

input distance along the diagonal of the torus. As the network gets larger the global 

metric distortion of a self-organized net is reduced, approaching the black (identity) line, 

but very slowly. In contrast, a pre-wired network is much less distorted (light blue). 

Bottom left: The mean number of final locations, obtained by providing 100 input 

locations, is plotted versus the size of the network (number of units in the CA3 layer) for 



networks with exponential pre-wired and with self-organized weights, when noise is very 

low (δ=0.002). The y-axis indicates the number of different final positions, after the 

removal of the input. Values are averaged over 4 different seeds, and standard errors of 

the mean are indicated. The cyan data points indicate the values obtained from a network 

with exponential weights, with the standard spatial decay constant equal to 1 grid unit (or 

2 grid units for the blue data points) while the purple points indicate values obtained from 

a network with Hebbian learning. Data points are seen to approximate the logarithmic 

trends explained in the text. Bottom Centre: Degree of clustering of the final positions. A 

measure of clustering is plotted as a function of network size, for networks with 

exponential pre-wired weights and with Hebbian learning (same colour coding as top 

left). The new green line indicates the same Clu measure for the initial locations that, by 

construction, are regularly arranged on a grid 10x10. Bottom right: The mean 

displacement, following the removal of the input, between the initial position and the 

final position. 



 

Figure 3. Recurrent collaterals contribute little to the code, but sustain it, in part. 

Top Row, left: Information plotted versus the number of CA3 units in the sample. Fast 

noise δ=0.1. Blue curves refer to the DG-CA3 system without recurrent collaterals; 

adding the recurrent collaterals leads to the light green curves, and to the purple-light 

blue curves when mossy fiber inputs are turned off. The three purple to light blue curves 

refer to networks with DG inputs turned off, and recurrent connections self-organized 

with progressively more intense training, from bottom to top: simulations with 10000 

learning time steps and γ=0.0001; with 10000 training steps but γ=0.002; and with 

γ=0.002 but 20×10000 training steps. The dark green curve (nearly flat) shows the spatial 

information present in the system when DG inputs are off, in the absence of any learning. 

Right: the bars show the mean displacement, as in Fig. 2 (bottom right), between the 

initial position and the final position for three values of fast noise, δ=0.002, δ=0.1, δ=1. 

Averages over 400,000 trials, started randomly in one of the 400 possible initial 

positions, while decoding samples of 10 CA3 units. The limited sample used in decoding 

results in a meaningful mean displacement also when the network is still driven by DG 

inputs. Bottom row: Information plotted versus the fast noise δ values, on a semi-



logarithmic scale, as measured by the slope parameter of the information curve I1 (left) 

and by the saturation level I∞ (right; see text). Blue, light green and purple curves as 

above. Cyan curves correspond also to DG inputs off, but for a network with standard 

pre-wired exponential weights. 



 

Figure 4. CA3 place fields are refined by learning. Examples of CA3 firing maps in the 

DG-CA3 model network with MF and RC connections. Left: the top row shows CA3 

place fields with no Hebbian learning; the middle row shows the same fields after 

learning; and the bottom row shows them after mossy fiber inputs are turned off. Right: 

fraction of CA3 units with at least a place field (mid-right) and fraction of those with 

multiple fields among those with at least one (rightmost). Same color coding as in the 

frames of the left panel. 



 

Figure 5. The storage capacity for multiple charts is limited, but substantial residual 

information remains. Left and center: Information plotted versus the number of CA3 

units in the sample, for a substantial noise level, δ = 0.1 (left), and for lower noise, δ = 

0.002 (center). The two panels show the average amount of information retained through 

pre-wired recurrent collateral weights, in absence of the input, , about position in one 

environment, after the storage of 1, 2, 4 and 6 charts, indicated by curves from purple to 

light blue, i.e. from top to bottom. The black curves indicate the amount of information 

retrieved through recurrent collaterals about a chart that had never been stored, when 6 

other charts were learned, the “residual information”. If no learning sessions had 

occurred, however, the curve would be flat at the bottom (not shown). The orange curve 

is the information retained after reshuffling synaptic weights, as explained in the text. 

Dots correspond to information values obtained from simulations, while the curves 

results from fits to the data points, as detailed in Methods. Right: position information 

retrieved from the last (dashed pink) and first (pink) of 4 charts stored in a network with 

Hebbian learning, from 10 CA3 units, as a function of the learning rate. The dashed blue 

line is the reference level for 4 pre-wired charts. The black segments connect residual 

information datapoints. A full cue was provided to initiate retrieval. Limited plasticity (a 

small learning rate) is sufficient for effective storage of multiple chats, while increasing 

the rate, in this case beyond γ=0.0002, adds only to the residual information. 



 

Fig. 6. Some context discrimination remains in memory, if self-organization is 

limited. The amount of information about which of 4 distinct environments is reflected in 

the DG inputs is extracted from subsamples of CA3 model units. Left: decoding the 

activity driven by the inputs allows for good discrimination (the green curves, which are 

fitted to the data points as before), irrespective of noise. Turning the inputs off greatly 

reduces the context information retained in all cases, but more information remains when 

the network is allowed to self-organize, and noise is very low (purple curve). In contrast, 

pre-wired connectivity appears not to be suitable for context discrimination (light and 

dark blue curves). Importantly, context information decreases with more plasticity (pink 

to purple datapoints, top to bottom), indicating progressive attractor collapse).  Center: a 

sample 300-time-step trajectory, with the environment decoded at each position, from a 

random sample of 10 units, shown by a different symbol (the green square is the correct 

environment). Some of the locations are superimposed on the 10x10 grid used for 

decoding. Right: the cumulated activity of the 10 units in each of the 4 environments, 

plotted in pseudo-colors. The correct environment is top left. Typically 3-4 of the units 

have a field in each environment, occasionally a double field. Hence overall activity 

remains sparse. 


