
Supplementary Material:
sPyNNaker: a Software Package for Running PyNN
Simulations on SpiNNaker

1 PERFORMANCE PROFILING

To evaluate execution performance of the sPyNNaker software, the event-based callbacks are profiled to
measure the amount of time spent in core functions, and the associated impact on SNN performance. This
section begins with assessment of the processing overheads of individual callbacks, and then demonstrates
how they combine at runtime. Holistic cost models are then developed to predict the capacity of a given
core when simulating an SNN containing varying levels of connectivity. Finally, the memory footprint of a
typical core is assessed and reported.

To measure elapsed time, two readings are taken from the free-running clock on each SpiNNaker
core, with each reading stored in an array in DTCM. On simultation completion, the difference between
associated values is calculated to give a timing measurement in clock cycles (cc). The cost of the first clock
read and store is included in this measurement, and is therefore subtracted from all measured results to
get the true elapsed time. This cost is measured at 5 cc, where at 200 MHz the period of a single clock
cycle is 5 ns. Note that for comparison and consistency reasons, all measurements below are reported
in microseconds. Unless otherwise stated, all results are recorded over 100 events, and the minimum,
maximum, mean, and standard deviation of all cases reported. Where a test requires multiple cores to
utilise SNN functionality, unless otherwise stated, all measurements are performed on a neuron application
executed on physical core 2 of a random selection of SpiNNaker chips from the large SpiNNaker machine
hosted at the University of Manchester. To aid performance predictions from measurements, a number of
cost models are generated from measured data. Due to measuring output from compiled code following
repeated execution paths, results are consistent and scale linearly, meaning linear cost models are generated
with values of R2 = 1 unless otherwise stated.

1.1 Individual Callback Performance

In the following measurements, the backbone software costs of Spin1API and SARK are typically small
relative to those of the callbacks they schedule. However, a significant cost which must be evaluated outside
the individual callbacks is that of responding to a hardware interrupt, generating an event, and scheduling
the associated callback – see vertical black lines in Fig. 9. To evaluate these costs, interrupts are disabled
within a timer callback on a single core running a sPyNNaker application, and each event triggered
in isolation. The measurement start time is then read from the clock, and interrupts are enabled causing the
core to respond to the event, and the measurement end time is read immediately on entering the associated
callback. The difference is then calculated and the cost of enabling interrupts (14 cc) is subtracted yielding
the response times in Tab. S1. Response times are callback and priority dependent, with the -1 priority
event responding quickest due to it not queuing callbacks, and because the code to be executed is accessed
directly via a pointer by the operating system. Conversely, the priority 2 callback is the slowest to respond,
which is as expected due to its queuing of callbacks, and the operating system checking for higher priority
tasks before dispatching a callback. The two priority 0 events have similar response times, with the software
event triggered user callback responding slightly quicker as no hardware event handling is required.

1

Supplementary Material

Interrupt
Priority Response to Callback Time

(cc)
Time
(µs)

2 timer callback 374 1.87
-1 multicast packet recevied callback 50 0.25
0 user callback 89 0.445
0 dma complete callback 121 0.605

Callback to Callback Transition Time
(cc)

Time
(µs)

user callback to dma complete callback 172 0.86
dma complete callback to dma complete callback 179 0.86

Table S1. Context switching costs of different events and their associated callbacks

Also included in Tab. S1 are the costs associated with exiting a callback and entering one which is already
queued. This is an important consideration in the spike processing pipeline, where in an active pipeline
the transition between instances of dma complete callback happens frequently, taking 0.86µs each
time. Together with the interrupt response times, these costs are features of using an event-driven operating
system such as SpiN1API, which provides a trade-off between performance and masking the complexity of
interacting directly with hardware.

1.1.1 timer callback

The periodic updating of neuron and synapse states consumes a significant proportion of core processing
time. This code is critical to overall system performance, as it governs the speed at which the system can
run together with the remaining time available to process incoming spikes. Results from execution of a
timer callbackwhen simulating both LIF and Izhikevich neurons (with both current- and conductance-
based exponential synapses) are detailed in Fig. S1. The data shows mean results per callback, calculated
from running 100 simulation timesteps (100 calls to timer callback). Note that no spikes are emitted
or received during this test, meaning no additional processing overheads are incurred, and that no refractory
dynamics are encountered, and hence the cost of updating a single neuron is fixed. Results are shown for
populations containing increasing numbers of neurons, enabling evaluation of per-neuron performance
together with fixed processing costs associated with the background neuron handling framework. The LIF
neuron is executed at realtime with a simulation timestep of 1 ms, giving a total of 200, 000 instruction
cycles between calls to timer callback – however the size of the simulation timestep ∆t does not
impact the cost of the callback (only numerical accuracy within the simulation). The total callback time
for the LIF model increases linearly with the number of neurons, with a fixed processing overhead of
1.365µs (11.781µs with full recording), and an additional cost of 1.015µs (1.007µs with full recording)
per neuron. The cost of processing the Izhikevich neuron with current-based synapse shaping also increases
linearly with the number of neurons, with a fixed processing overhead of 1.361µs (11.763µs with full
recording), and an additional cost of 1.450µs (1.441µs with full recording) per neuron. This information
is summarised in Tab. S2, including the fixed cost of responding to the timer event.

While these costs describe the typical behaviour of a population of sub-threshold neurons, small changes
in processing time will occur when an individual neuron emits a spike, or is refractory. On spiking, the
neuron must call functions to update its state and begin any refractory dynamics, and must also call a
SpiN1API function to send a packet to the router. The additional costs associated with spiking for the
neuron models of Sec. 3.3 are detailed in Tab. S3. The additional operations of the Izhikevich neuron model
(Eq. 7) require additional processing relative to the LIF neuron. Post spiking, the lack of separate refractory

2

Supplementary Material

y = 1.015x + 1.365
y = 1.245x + 1.365
y = 1.450x + 1.361
y = 1.680x + 1.365

0

100

200

300

400

500

0 50 100 150 200 250

Ti
m

e (
𝜇s

)

Number of Neurons

LIF Curr LIF Cond IZK Curr IZK Cond
LIF Curr LIF Cond IZK Curr IZK Cond

(a)

y = 1.007x + 11.761
y = 1.236x + 11.801
y = 1.441x + 11.763
y = 1.671x + 11.794

0

100

200

300

400

500

0 50 100 150 200 250

Ti
m

e (
𝜇s

)

Number of Neurons

LIF Curr LIF Cond IZK Curr IZK Cond
LIF Curr LIF Cond IZK Curr IZK Cond

(b)

Figure S1: Performance measurements and linear cost models characterising execution time of
timer callback for a range of neuron and synapse model combinations, all for a range of numbers of
neurons: (a) no output data recording; (b) full output data recording (spikes, V , gsyn,exc, and gsyn,inh).

dynamics mean the Izhikevich neuron requires the same sub-threshold level of processing. However, the
LIF neuron benefits from a reduced update time during its refractory period due to its clamped membrane
potential. When considering a LIF neuron as part of a larger population simulated on a single core, this
reduced update time during a refractory period has the benefit of reducing the total population update time,
and compensates for other neurons which have spiked during this update (and hence paid the additional
cost of spiking). It may also allow the core to catch up if multiple neurons spiked in previous updates and
caused the core to lag behind its counterparts.

Nueruon model Synapse Model Recording mn (µs / neuron) cn (µs)
LIF Current None 1.015 3.235
LIF Current Full 1.007 13.631
LIF Conductance None 1.245 3.235
LIF Conductance Full 1.236 13.671
Izhikevich Current None 1.450 3.231
Izhikevich Current Full 1.441 13.633
Izhikevich Conductance None 1.680 3.235
Izhikevich Conductance Full 1.671 13.664

Table S2. Variable and fixed neuron processing costs, including cost of responding to timer events (see Tab. S1).

Neuron Model Sub-threshold
Update Time (µs)

Refractory
Update Time (µs)

Additional Cost
of Spiking (µs)

LIF 0.405 0.185 0.205
IZK 0.84 0.84 0.3

Table S3. Components of single neuron update times and variations due to firing and refractory period

Frontiers 3

Supplementary Material

1.1.2 multicast packet received callback

On receiving a packet, the core immediately responds with the callback detailed in Sec. 3.2.3. Execution
can follow two routes depending on whether the spike processing pipeline is active: if the pipeline is
inactive this callback must additionally raise a software event to kick-start the spike processing pipeline
(see Sec. 3.2.4). Measurements are taken encapsulating the functions internal to the callback, with zero

Scenario Time (µs)
Pipeline inactive 0.44
Pipeline active 0.23

Table S4. Cost models for execution of multicast packet received callback

variability recorded across all tests, as shown in Tab. S4. It is observed that when the pipeline is active this
callback is ≈ 2× faster than when inactive.

1.1.3 user callback

The user callback responds to the user event, and kickstarts the spike processing pipeline. The
callback calls the function setup synaptic dma read, which uses the latest key in the spike input
buffer to locate and copy the associated synaptic data from SDRAM to core DTCM. This function is
the same as that called from within the dma complete callback to initiate processing of the next
existing spike and sustain the spike processing pipeline. Its performance within the user callback is
reported here, but should also be used when predicting costs of setup synaptic dma read executed
from within a dma complete callback.

The function setup synaptic dma read first retrieves the next spike ID to process from the input
spike buffer, and uses it to perform a binary search of the Master Population Table. The cost of searching
this table for a variety of search depths (i.e. numbers of source vertices) is shown in Fig. S2(a), with the
best and worst case search times for a source vertex in each layer reported in (b). This data was recorded
from an SNN containing a single target neuron executed on a single core, with variable numbers of spike
sources each executed on a single vertex. Each spike source is timed to send a single spike to the target
neuron at a unique time. This generates a master population table on the target neuron vertex of length
equal to the number of source vertices, and causes lookup of each item exactly once. Timing measurements
recorded from the search, are displayed in Fig. S2 – no variation is observed across repeated measurements.
The binary search algorithm proves efficient for searching the structured master population table, with
per-layer worst and best case search times increasing linearly with search depth. When formulating a
machine graph and creating data structures for a sPyNNaker application, no assumptions are made about
network activity, and hence the master population table structure is not optimised to return entries from
a particular source. When developing a cost model for this search time, it is assumed that spikes will be
received at the same rate from all source vertices in the table. Due to small implementation differences in
searching the upper and lower half of a search region, the worst case search time for an individual layer
increases at a higher rate than the best. However, from Fig.S2(a) it is seen that this has a limited effect on
search times within a layer, and an average of these two extremes provides a conservative estimate of the
average layer search time (dashed red line).

To understand the contribution of this search to setup synaptic dma read, total function execution
time is measured within an SNN simulation. A single spike source neuron, and single target neuron
population are connected via a single projection, and individual spikes emitted from the source at

4

Supplementary Material

0

0.2

0.4

0.6

0.8

1

1.2

0 128 256 384 512

Ti
m

e (
𝜇s

)

Search Sample

Search Layer Depth 1 2 3 4 5
6 7 8 9 x

(a)

y = 0.095x + 0.01

y = 0.11x + 0.005

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Ti
m

e (
𝜇s

)

Search Layer Depth

Best Case Worst Case
Linear (Best Case) Linear (Worst Case)

(b)

Figure S2: Master population table lookup time with search depth. Left: lookup for increasing numbers of
source vertices; Right: measurements of best (0.11x+ 0.005) and worst (0.095x+ 0.01) case search times
within a search layer, together with cost models (dashed lines).

unique times. Each spike therefore requires kick-starting of the pipeline, triggering execution of the
user callback. Measurement of the callback contents, which comprise a single call to the function
setup synaptic dma read are reported in Tab. S5. These measurements show the contribution of the
single-layer master population table search to the total callback time is relatively small, with the fixed costs
associated with DMA setup and the search framework dominating. However, with a fan-in from over 512
vertices, the worst-case contribution will increase by a factor of ≈ 10, making a significant contribution to
total callback time.

1.1.4 dma complete callback

On DMA completion, the synaptic row is in DTCM and must be processed to convert each synaptic word
into neural input. To measure the cost of this processing, readings from the clock are taken on entering and
exiting dma complete callback. A test SNN is created with a spike source population containing
a single spike source neuron, connected via an all-to-all connector to a single target population of LIF
neurons of variable number. Spikes from the single source are timed to arrive at the postsynaptic neuron
in the window between calls to timer callback, after the preceding call has completed: therefore
all overheads reported in Fig. S3 are a direct result of row processing only. Each test is independent of
the neuron model, and does not include synaptic plasticity. A range of synaptic row lengths is tested,
corresponding to the fan-out from a presynaptic neuron to a range of postsynaptic neurons, and a linear
relationship is observed between number of synaptic words and processing time.

At the beginning of the callback, in order to sustain the spike processing pipeline, a single function call to
setup synaptic dma read is made (the same function called from within user callback. This
aims to setup the DMA for the next synaptic row to process, however when called within the active spike
processing pipeline there are now multiple execution paths. In addition to searching the master population
table with a new key from the input spike buffer, it is possible that a subsequent Address List row must be
processed for the current spike (such as when the core simulating Excitatory A in Fig. 3(b) receives a spike
from one of its neurons – see Fig. 7), or that the input spike buffer is empty and the pipeline should be
deactivated. Timing data for these alternative execution paths is presented in Tab. S5.

Frontiers 5

Supplementary Material

y = 0.115x + 0.48

0

10

20

30

40

0 50 100 150 200 250

Ti
m

e (
𝜇s

)

Synaptic Words

Row Processing Linear (Row Processing)

Figure S3: Processing synaptic row into neuron input: measured data (markers) and cost model
demonstrating a fixed overhead of 0.480µs, with an additional cost of 0.115µs per synaptic word.

Execution Paths of setup synaptic dma read when called from
dma complete callback Time (µs)

dma complete callback prior to DMA request 1.25
Check there are no further rows for this MPT entry, and lookup next spike 2.14
Search for next spike but the input spike buffer is empty, so deactivate pipeline 0.66
Accessing subsequent row on same MPT entry 1.472

Table S5. Processing times from a range of execution paths through the function setup synaptic dma read, which is called from both the
user callback and dma complete callback to initiate DMA transfer of the next synaptic row to process.

1.2 DMA Performance

Performance of a direct memory access (DMA) is an important consideration in overall spike processing
performance. An overview of execution costs is provided here, both in terms of direct performance, and
in the context of a sPyNNaker application. Profiling is then extended to explore performance variations
between isolated individual cores, and when multiple cores contend for SDRAM data.

1.2.1 sPyNNaker DMA Performance

To isolate outright DMA performance from the SpiN1API event-based operating system, timing
measurements are taken around the DMA request within the user callback. In order to stop the
callback continuing to completion and the system following the remainder of the spike processing pipeline,
immediately after completing a DMA request, the DMA controller is polled within a while loop to check
DMA state, and on DMA completion the final timing measurement is made. Total transfer time is reported
for a range of data sizes in Fig. S4(a). Total DMA time is approximately linear with the size of transferred
data, with slight variations introduced from bursting operation and the interaction between the core DMA
and SDRAM controllers. A uniform standard deviation is observed with range of ≈ 4 cc, which increases
linearly with data size, giving a variation of ≈ 10 cc (≈ 50 ns) when transferring data representing the
maximum size of a synaptic row (258 words). The fixed cost of 0.897µs is introduced by the software
function calls setting up the DMA.

Figure S4(b) shows the same test, performed within the typical sPyNNaker spike processing pipeline.
Now the user callback is free to return on callback completion, and the final timing measurement
is made immediately on entering the dma complete callback. While the per-word transfer cost

6

Supplementary Material

y = 0.0114x + 0.8968

0

2

4

6

8

10

12

14

0

1

2

3

4

5

0 50 100 150 200 250

St
an

da
rd

 D
ev

ia
tio

n
(c

c)

Ti
m

e (
𝜇s

)

Synaptic Words

Direct DMA Time

Standard Dev. Linear (DMA Time)

(a)

y = 0.0114x + 1.5621

0
5
10
15
20
25
30
35
40
45
50

0

1

2

3

4

5

0 50 100 150 200 250

St
an

da
rd

 D
ev

ia
tio

n
(c

c)

Ti
m

e (
𝜇s

)

Synaptic Words

sPyNNaker DMA Time

Standard Dev. Linear (DMA Time)

(b)

Figure S4: Minimum DMA transfer time measured outside typical neuron processing conditions: over a 100
trials a linear cost model estimates a fixed cost of 0.897µs, plus 0.011µs per synaptic word. Costs include
overhead of software function calls to setup DMA. (a) Direct DMA time, recorded outside event-based
operation; (b) DMA time as recorded within a sPyNNaker application, measuring time from function call
requesting DMA to entering dma complete callback.

remains the same (0.011µs), several fixed processing costs are introduced. For small data sizes (< 40
synaptic words), the DMA completes before the core exits the user callback, meaning a DMA
complete event is registered and waiting on exit, and SpiN1API immediately schedules and begins
execution of dma complete callback, resulting in a fixed cost of 1.745µs. For transfers between
40 and 105 synaptic words, the DMA completes after the user callback has exited, and the core
returns to examine the callback queues within SpiN1API. To avoid contention interrupts are disabled
during this process, meaning if the DMA completes during this time the core cannot immediately respond
to the associated event. Instead, it can only do so after interrupts are re-enabled, leading to a constant
response time of 2.85µs. The standard deviations of these measurements are ≈ 0, as expected behind
fixed operating system costs. For large data transfers (> 105 synaptic words), transfer time exhibits the
response (and variation) shown in Fig. S4(a), albeit with a larger fixed component due to addition of the
context switching cost of responding to the DMA complete event. Note, that the behaviour of a DMA of
38 < synaptic words < 105 is modified if the core was already processing a callback prior to processing
the spike, such as a lower priority timer callback. Under these circumstances, the core will return
to processing of the timer callback on completion of the user callback, meaning the core will
respond immediately to the subsequent DMA complete event, and the response time follows the behaviour
of > 105 synaptic words.

1.2.2 DMA Core to Core Variation

Due to chip layout, and cores having different paths to the SDRAM controller, variation is expected
between cores when performing the same task in isolation across different cores. Figure S5 shows the total
DMA time (as measured in Fig. S4(a)) for a range of data sizes. The average transfer time is reported by
the coloured marker, while upper and lower error bars denote the maximum and minimum measurements
respectively. In all cases it is seen that the average measurement is close to the minimum, with outliers
defining the maximum. Note that core 10 is the chip monitor core in this test, meaning it is not possible to

Frontiers 7

Supplementary Material

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
M

A
Ti

m
e

(𝜇
s)

Core

8 16 32 64 128 255DMA Size (words)

Figure S5: Comparison of isolated DMA performance for each core on a single chip (core 10 is the chip
monitor).

test its DMA performance. While small variations exist between cores, this test shows there is relatively
little variation, enabling cost models to be built from the data collected above.

1.2.3 DMA Contention

In a large simulation, multiple cores on a the same chip will run neuron modelling applications. These
applications may well be modelling multiple sub-populations for the same parent population, and hence will
likely share PyNN level projections. This in turn means that multiple cores will receive packets representing
the same spike simultaneously. While this is not an issue for the asynchronously operating cores, it can
impact DMA performance as multiple cores will simultaneously request synaptic data associated with
a spike. Transfer times will increase due to the finite SDRAM bandwidth, and from latency introduced
from sequential processing of DMA burst requests by the SDRAM controller. To demonstrate the effect of
SDRAM DMA contention, a test application is compiled which performs 1000 repeated DMA transfers for
a range of data sizes and measures total transfer time as in Sec. S1.2.1. This application is then executed on
multiple cores simultaneously to measure the effect of contention. Maximum DMA time for each scenario
is plotted in Fig. S6 for physical core 0 (representing the worst case when core 10 is the monitor as shown
in Fig. S5).

For DMAs of < 25 words, no degradation in maximum DMA time is observed, as requested data can
be transferred in a single burst, and over the repeated tests core 0 ends up at the back of the queue on the
SDRAM controller at least once. The transition between 2 and 4 contending cores sees the DMA read
bandwidth of 600 MBs−1 saturate for larger data sizes. When 8 cores and above simultaneously request
data, performance is reduced significantly: maximum DMA time is increased by ≈ 2× for transfers of
125 words, and ≈ 2.6× for transfers of 250 words. This effect is compounded as more cores contend, and
when 16 cores request data simultaneously maximum DMA time increases by ≈ 4.5× and ≈ 5.4× for 125
and 250 word transfers respectively.

8

Supplementary Material

12 25 50 75 100 125 150 175 200 225 250
DMA Size (words)

16

12

8

4

2

1

C
or

es
 C

on
te

nd
in

g

0

5

10

15

20

25

D
M

A
 T

im
e

(
s)

Figure S6: Total DMA time for a range of data sizes from the perspective of core 0, when additional cores
are simultaneously requesting data from SDRAM.

1.3 Callback Interaction

The individual cost measurements reported above can be combined to predict the total cost of processing
both: a single incoming single spike; and the arrival of multiple spikes and their handling via the spike
processing pipeline.

1.3.1 Processing a Single Spike

To predict the cost of processing a single spike requires consideration of the interaction between multiple
callbacks as shown in Fig. S7(a). From the individual measurements and linear cost models developed in
Secs. S1.1 & S1.2, it is possible to superpose fixed processing costs which must be paid once per spike,
and variable costs which are paid once for every neuron a spike targets. This in turn leads to the total
spike processing cost model presented in Tab. S6. Three regimes are presented for the different possible

Variable Contributions (ms)
Cost
(µs / synaptic word)

Row Processing 0.115 0.115 0.115
DMA Fetch 0 0 0.011
Total 0.115 0.115 0.126

Fixed Contributions (Single Spike) (cs) Cost µ(s)
multicast packet received callback 0.44 0.44 0.44
user callback (prior to DMA request) 1.25 1.25 1.25
Fixed DMA cost (see Fig. S4(b)) 1.745 2.84 1.562
setup synaptic dma read from within
dma complete callback (deactivates pipeline) 0.66 0.66 0.66

Process Row 0.48 0.48 0.48
Context switching (from user event, DMA complete event
context switch included in fixed DMA costs) 0.445 0.445 0.445
Total 5.02 6.11 4.837

Table S6. Single spike processing costs for the process shown in Fig. S7(a)

Frontiers 9

Supplementary Material

Process
Row

timer_callback

multicast
packet_received_

callback
_dma_complete
_callback

DMA Controller

user_callback

Core Activity

Sleep

Single Spike Time

Measured
DMA Time

Request
DMA

Locate Synaptic
Row Address

No Spikes Remaining:
Deactivate Pipeline

(a)

0

5

10

15

20

25

30

35

40

0

10

20

30

40

0 50 100 150 200 250

Ti
m

e (
𝜇s

)

Target Neurons

Single Spike Processing

(b)

Figure S7: (a) Schematic detailing components of a single incoming spike, and (b) spike processing costs
measured for simulating a spike targetting increasing numbers of postsynaptic neurons, together with cost
model prediction (dashed yellow line).

responses of the DMA based on transfer size. When operating transfers below 105 synaptic words the
DMA completes before the user callback exits, or while the operating system has disabled interrupts,
meaning there is no DMA-based contribution to the variable component of spike processing, and the fixed
contributions are associated with those shown in Fig. S4(b). Additional context switching costs come
from responding to the user event and entering the associated callback, while fixed contributions are made
from processing the synaptic row, executing the multicast packet received callback, and
the second call to setup synaptic dma read within the dma complete callback, which finds
no further spikes to process and deactivates the spike processing pipeline. The time required to process a
single spike ts, is therefore given by Eq. S1.

ts = msn+ cs where

ms = 0.115, cs = 5.020 for n < 45

ms = 0.115, cs = 6.110 for 45 < n < 105

ms = 0.126, cs = 4.837 for 105 < n

(S1)

To corroborate these predictions, the end-to-end processing time of a single spike (ts), is
measured according to Fig. S7(a) for varying numbers of target neurons. Measurements
begin on entering multicast packet received callback, and end directly before exiting
dma complete callback. Predictions from Eq. S1 are displayed in Fig. S7(b), showing good

agreement with measurements taken directly from simulations. While treating the three regimes of the DMA
processing individually produces an accurate model for spike time prediction, it is observed that extending
the model capturing the region for > 105 synaptic words down to 0 provides a good approximation, and
hence models make use of this assumption when predicting pipeline performance in Sec. S1.3.2.

1.3.2 Processing Multiple Pipelined Spikes

Following the successful profiling of a single spike, the same approach is applied to the spike processing
pipeline, with the aim of characterising how many spikes can be processed within a set period of time.
Pipeline operation is demonstrated by the processing of spikes 2, 3, and 4 in Fig. 9, and is characterised by
three different types of spike: the first spike in the pipeline, multiple subsequent spikes, and the last spike

10

Supplementary Material

timer_callback

multicast
packet_received_

callback
_dma_complete
_callback

DMA Controller

user_callback

Core Activity

Sleep

First Spike Time

Measured
DMA Time

Request
DMA

Process
Row

Locate Synaptic
Row Address

(a)

Process
Row

timer_callback

multicast
packet_received_

callback
_dma_complete
_callback

DMA Controller

user_callback

Core Activity

Sleep

Subsequent Spike Time = "# + "%

Locate Synaptic
Row Address

Next DMA Hidden
Behind Row Processing

Request
DMA

Process
Row

"# "%

(b)

Process
Row

Process
Row

timer_callback

multicast
packet_received_

callback
_dma_complete
_callback

DMA Controller

user_callback

Core Activity

Sleep

Last Spike Time = "# +"%

No Spikes Remaining:
Deactivate Pipeline

"# "%

(c)

Figure S8: Schematics detailing components of spike processing pipeline: (a) first spike, (b) subsequent
spikes, and (c) last spike.

in the pipeline – as shown in Fig. S8. These distinctions are made due to the different actions of each spike
type in relation to the spike processing pipeline. Processing of the first packet to arrive at the core must
activate the spike processing pipeline, register a user event to locate the address of the associated synaptic
information, and initiate a DMA to bring it into core DTCM (see Fig. S8(a)). If further packets are received
by the core during this process, then the associated spikes will be processed in the activated pipeline. On
entering the dma complete callback of the first spike, the synaptic row address associated with the
subsequent spike is located and a DMA initiated. The core then continues to process the synaptic row
of the first spike, converting each synaptic word into the appropriate synaptic input buffer contribution.
On completion of the dma complete callback, processing of the first spike is complete, and the
dma complete callback associated with the subsequent spike is begun (see Fig. S8(b)). This process

repeats for each subsequent spike, however when processing the dma complete callback for the
last spike, there are no further spikes to be processed, and hence no DMA is performed and the pipeline is
deactivated (see Fig. S8(c)).

It is possible to characterise each type of spike according to the scenarios shown schematically in
Fig. S8. The data used in this characterisation process is displayed for the three spike types in Tab. S7.

Frontiers 11

Supplementary Material

Variable Contributions (µs / synaptic word) ms,f ms,s ms,l
DMA transfer 0.011 0 0
Process Row 0.115 0.115 0.115
Total 0.126 0.115 0.115

Fixed Contributions µ(s) (cs,f) (cs,s) (cs,l)
multicast packet received callback 0.44 0.23 0.23
user callback (prior to DMA request) 1.25 N/A N/A
DMA Fixed costs 1.562 0 0
setup synaptic dma read from within
dma complete callback 2.14 2.14 0.66

Process Row 0.48 0.48 0.48
Context switching 0.695 1.11 1.11
Total 6.567 3.960 2.48

Table S7. Variable and fixed spike processing costs for the: first, subsequent and last spikes in an active spike processing pipeline.

As with the single spike, the first spike in the pipeline must pay a variable cost for both the DMA
transfer and row processing. However, because the DMA is hidden behind row processing for both
the subsequent and last spikes, their variable components are set based entirely on the variable row
processing cost. The first spike spends longer in the multicast packet received callback,
as this is where the pipeline is activated. It also incurs the additional overheads associated with the
user event. The subsequent and last spikes are masked from the DMA fixed processing costs within the
dma complete callback, and instead experience only the cost of the SpiN1API software call to

initiate a DMA, which is included in the setup synaptic dma read contribution of 2.14µs. The last
spike pays a reduced cost here, as there are no further spikes to process, and hence no DMA is initiated and
the pipeline is deactivated. Regarding context switching, the first spike includes the packet received and user
events, while the DMA complete event overhead is incorporated into the DMA fixed costs. The subsequent
and last spikes pay the packet recevied event overhead, together with the dma complete callback
to dma complete callback cost from Tab. S1.

The range of coefficients for ms and cs in Tab. S7, characterise spike processing and enable bottom-up
predictions of the total number of spikes which can be processed in a given period of time. In order to
assess realtime performance, it is interesting to set this period of time (tp) to that between timer events (see
Sec. 3.2). A combined cost model is developed in Eq. S2, which characterises the number of spikes which
can be processed by a neuron application core, after it has completed updating the state of its neurons.
The time taken to perform the timer callback is calculated from mn and cn in Tab. S2, and then
subtracted from the total time between timer events (tp), giving the remaining time available for spike
processing. The time taken to process the first and final spikes is then subtracted from this remainder (dealt
with in isolation as these spikes follow the paths outlined above – activating and deactivating the spike
processing pipeline – with 2 added to the total number of processed spikes). The total remaining time is
then divided by the cost of processing a single subsequent spike, in order to evaluate the total number of
spikes which can be processed.

Ts =
tp − (mnn+ cn) − (ms,1nP + cs,1) − (ms,lnP + cs,l)

ms,snP + cs,s
+ 2 (S2)

12

Supplementary Material

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sp
ik

es

Connection Probability

Neurons Per Core 16 32 64
128 255 512

(a)

0

50

100

150

200

250

0 64 128 192 256 320 384 448 512

Sp
ik

es

Neurons Per Core

Connection Probability 0.05 0.1 0.2
0.3 0.5 1

(b)

Figure S9: Model predictions for numbers of spikes which can be processed between timer events for a
range of connection probabilities and numbers of neurons simulated per core. Markers indicate limiting
cases measured directly from sPyNNaker simulations.

Predictions using Eq. S2 and coefficients from Tabs. S2 & S7 are displayed in Fig. S9, for a range of
population sizes and connection probabilities. To corroborate these predictions, a corresponding SNN
network is simulated via sPyNNaker, containing a single spike source population projecting with variable
probability to a target neuron population of variable size. The number of spikes sent between two timer
events is then increased to find the limiting case where no further spikes can be processed without
delaying the subsequent timer callback. Model predictions are in good agreement with measurements,
validating the use of Eq. S2 to characterise system performance.

1.4 Memory Use

As well as core processing, TCM memory consumption plays an important part in application
performance. For example, available memory impacts the number of neurons which can be simulated on a
core, and storage of direct synaptic matrices in DTCM negates the need for a DMA during spike processing.
Tab. S8 details the typical DTCM footprint of neuron and spike processing data structures for the core
simulating the Excitatory A population containing 255 LIF neurons in Fig. 3(b). The largest datastructures

Item Cost Model Typical (bytes)
Stack 2048 2048
Heap Dynamically allocated from remaining memory 19072
Output Recording 36 (spikes) + (3 ∗ 1024 (V, gsyn(exc), gsyn(inh))) 3108
Master Population Table (96/8) × nnum source vertices(5) 60
Address list (32/8) × naddress list rows(6) 24
Neuron and Synapse Model (32/8) × nparams(LIF = 8 + 6) × nneurons(250) 14280
Synaptic Input Buffers (16/8) × nreceptors(2) × nslots(16) × nneurons(250) 16320
Input Spike Buffer (32/8) × 256 1024
DMA Buffers (32/8) × 2 × (nneurons(255) + nrow header words(3)) 2064
SARK & SpiN1API 3000 + 3000 6000

Table S8. DTCM use for a core simulating the Excitatory A population in Fig. 3(b): containing 250 LIF neurons and fan-in from 5 source vertices (including
itself).

Frontiers 13

Supplementary Material

are the synaptic input buffers and neuron and synapse model parameters, which consume approximately
half of DTCM. These structures are large due to their containing instances for each individual neuron. The
example SNN contains relatively few populations of neurons, meaning the fan-in from source vertices
is relatively low, requiring only 0.086 kB of memory required to define the master population table and
address list. It is worth noting that for larger networks populations could receive projects from over 1000
source vertices, greatly increasing the size of these data-structures. A total of 3.108 kB is allocated to
record neuron state variables: a 36 byte bit field to record output spikes, and 1024 bytes to record each
of membrane potential, and excitatory and inhibitory conductances. Approximately 6 kB is used for the
event-based operating system, with further memory consumed by buffers for storing incoming spike IDs
(1 kB), and enabling DMA transfer of data to SDRAM (2 kB). Finally, stack is allocated 2 kB, leaving
≈ 19 kB for heap.

2 CALLBACK PSEUDO CODE

14

Supplementary Material

Algorithm 1 timer callback
1: // Update Synapse State
2: Disable interrupts (stop newly arriving spikes interfering with synaptic input buffers);
3: for each neuron N on the core do
4: Update existing excitatory synaptic input to time t+ ∆t;
5: Update existing inhibitory synaptic input to time t+ ∆t;
6: for each synapse type s do
7: Get integer sum of weights from synaptic input buffer: indexed by [n, s, t+ ∆t];
8: Convert integer sum of weights to fixed-point type (accum);
9: Add contribution to synaptic input;

10: end for
11: end for
12: Restore interrupts;
13:
14: // Update Neuron State
15: for each neuron n on the core do
16: Get neuron model components (neuron model, synapse type, input type, additional input and

threshold type);
17: Get excitatory input from synapse type component;
18: Get inhibitory input from synapse type component;
19: Convert synaptic input to neuron input (based on input type component);
20: Evaluate intrinsic currents from additional input component
21: Update neuron membrane potential based on existing state and new input currents (neuron model

component);
22: Store updated membrane potential and synaptic inputs for recording;
23: if membrane potential is above threshold (threshold type component) then
24: Reset membrane potential and set refractory period timer;
25: Notify additional input of spike event;
26: Add post-synaptic event to memory (for use in plasticity update);
27: Instruct router to emit spike from neuron N ;
28: end if
29: Disable interrupts;
30: Record requested output: spikes, conductances, membrane potential;
31: Enable interrupts;
32: end for

Algorithm 2 multicast packet received callback
1: // Process Multicast Packet
2: Extract 32-bit integer source neuron ID from packet and add to input spike buffer;
3: if spike processing pipeline is active then
4: // Do nothing as subsequent spikes will be processed sequentially from the input spike buffer at the

end of dma complete callback
5: else
6: Trigger user event leading to user callback and activate of spike processing pipeline;
7: end if

Frontiers 15

Supplementary Material

Algorithm 3 user callback
1: // Activate spike processing pipeline
2: for First spike in input spike buffer do
3: Use source neuron ID as key for master population table, to locate row in Address list
4: if Synaptic Matrix is stored in SDRAM then
5: DMA synaptic row from synaptic matrix in SDRAM;
6: else
7: Extract synaptic row from local synaptic matrix in DTCM;
8: end if
9: end for

Algorithm 4 dma complete callback
1: // Process Synaptic Row
2: if row does not contain plastic data then
3: Extract number of static synapses from header;
4: for each static synapse do
5: Extract from bottom 16 bits: delay d, target neuron index n, and synapse type tsyn;
6: Extract weight from top 16 bits;
7: Locate ring buffer slot indexed by [n, tsyn, t+ d];
8: Add new weight contribution, and check for datatype saturation;
9: end for

10: else if row contains plastic data then
11: Extract number of plastic synapses from header
12: for each plastic synapse do
13: Extract from fixed plastic data: delay d, neuron index n, and synapse type tsyn;
14: Extract plastic weight from variable plastic data;
15: Perform plastic weight update;
16: Add new weight contribution, and check for datatype saturation;
17: Write updated weight back to DMA buffer for transfer back to SDRAM;
18: end for
19: end if

16

Supplementary Material

3 EXAMPLE CODE: RANDOM BALANCED NETWORK
1 import pyNN.spiNNaker as sim

2
3 # Initialise simulator

4 sim.setup(timestep=1)

5
6
7 # Spike input

8 poisson_spike_source = sim.Population(250, sim.SpikeSourcePoisson(

9 rate=50, duration=5000), label='poisson_source')

10
11 spike_source_array = sim.Population(250, sim.SpikeSourceArray,

12 {'spike_times': [1000]},

13 label='spike_source')

14
15
16 # Neuron Parameters

17 cell_params_exc = {

18 'tau_m': 20.0, 'cm': 1.0, 'v_rest': -65.0, 'v_reset': -65.0,

19 'v_thresh': -50.0, 'tau_syn_E': 5.0, 'tau_syn_I': 15.0,

20 'tau_refrac': 0.3, 'i_offset': 0}

21
22 cell_params_inh = {

23 'tau_m': 20.0, 'cm': 1.0, 'v_rest': -65.0, 'v_reset': -65.0,

24 'v_thresh': -50.0, 'tau_syn_E': 5.0, 'tau_syn_I': 5.0,

25 'tau_refrac': 0.3, 'i_offset': 0}

26
27 # Neuronal populations

28 pop_exc = sim.Population(500, sim.IF_curr_exp(**cell_params_exc),

29 label='excitatory_pop')

30
31 pop_inh = sim.Population(125, sim.IF_curr_exp(**cell_params_inh),

32 label='inhibitory_pop')

33
34
35 # Generate random distributions from which to initialise parameters

36 rng = sim.NumpyRNG(seed=98766987, parallel_safe=True)

37
38 # Initialise membrane potentials uniformly between threshold and resting

39 pop_exc.set(v=sim.RandomDistribution('uniform',

40 [cell_params_exc['v_reset'],

41 cell_params_exc['v_thresh']],

42 rng=rng))

43
44 # Distribution from which to allocate delays

45 delay_distribution = sim.RandomDistribution('uniform', [1, 10], rng=rng)

46
47 # Spike input projections

48 spike_source_projection = sim.Projection(spike_source_array, pop_exc,

49 sim.FixedProbabilityConnector(p_connect=0.05),

50 synapse_type=sim.StaticSynapse(weight=0.1, delay=delay_distribution),

51 receptor_type='excitatory')

52
53 # Poisson source projections

Frontiers 17

Supplementary Material

54 poisson_projection_exc = sim.Projection(poisson_spike_source, pop_exc,

55 sim.FixedProbabilityConnector(p_connect=0.2),

56 synapse_type=sim.StaticSynapse(weight=0.06, delay=delay_distribution),

57 receptor_type='excitatory')

58 poisson_projection_inh = sim.Projection(poisson_spike_source, pop_inh,

59 sim.FixedProbabilityConnector(p_connect=0.2),

60 synapse_type=sim.StaticSynapse(weight=0.03, delay=delay_distribution),

61 receptor_type='excitatory')

62
63 # Recurrent projections

64 exc_exc_rec = sim.Projection(pop_exc, pop_exc,

65 sim.FixedProbabilityConnector(p_connect=0.1),

66 synapse_type=sim.StaticSynapse(weight=0.03, delay=delay_distribution),

67 receptor_type='excitatory')

68 exc_exc_one_to_one_rec = sim.Projection(pop_exc, pop_exc,

69 sim.OneToOneConnector(),

70 synapse_type=sim.StaticSynapse(weight=0.03, delay=delay_distribution),

71 receptor_type='excitatory')

72 inh_inh_rec = sim.Projection(pop_inh, pop_inh,

73 sim.FixedProbabilityConnector(p_connect=0.1),

74 synapse_type=sim.StaticSynapse(weight=0.03, delay=delay_distribution),

75 receptor_type='inhibitory')

76
77 # Projections between neuronal populations

78 exc_to_inh = sim.Projection(pop_exc, pop_inh,

79 sim.FixedProbabilityConnector(p_connect=0.2),

80 synapse_type=sim.StaticSynapse(weight=0.06, delay=delay_distribution),

81 receptor_type='excitatory')

82 inh_to_exc = sim.Projection(pop_inh, pop_exc,

83 sim.FixedProbabilityConnector(p_connect=0.2),

84 synapse_type=sim.StaticSynapse(weight=0.06, delay=delay_distribution),

85 receptor_type='inhibitory')

86
87
88 # Specify output recording

89 pop_exc.record('all')

90 pop_inh.record('spikes')

91
92
93 # Run simulation

94 sim.run(simtime=5000)

95
96
97 # Extract results data

98 exc_data = pop_exc.get_data('spikes')

99 inh_data = pop_inh.get_data('spikes')

100
101
102 # Exit simulation

103 sim.end()

Code S 1: Example PyNN script for execution via sPyNNaker

18

	Performance Profiling
	Individual Callback Performance
	timer_callback
	_multicast_packet_received_callback
	user_callback
	_dma_complete_callback

	DMA Performance
	sPyNNaker DMA Performance
	DMA Core to Core Variation
	DMA Contention

	Callback Interaction
	Processing a Single Spike
	Processing Multiple Pipelined Spikes

	Memory Use

	Callback Pseudo Code
	Example Code: Random Balanced Network

