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1 SUPPLEMENTARY TABLES AND FIGURES

Further to the work of the main text, we have chosen to model solids with alternate geometries so that
future work can consider alternate morphologies. It also provides evidence for why we initially selected a
cube for our work. For this work, we will model the platonic solids. Platonic solids are regular, convex
polyhedra with equivalent faces of regular polygons, i.e. tetrahedron, cubes, octahedron, dodecahedron and
icosahedron as illustrated in Figure S1. Throughout modelling we used platonic solids of equal volume
and mass.

Figure S1. Platonic Solids, such as tetrahedron, cube, octahedron, dodecahedron and icosahedron (from
left to right) with the number of faces of 4, 6, 8, 12 and 20, respectively.

Regarding RUBIC’s design, the robot is composed of a fixed structure (modelled as a cubic platonic
solid) with four soft fluidic actuators on each face, which inflate to perform movement. Locomotion can
be achieved by inflating actuators on the bottom face to roll the robot over one of its edges in the desired
direction, as demonstrated in Figure S4. The rotation angle and the actuator volume are used to analyse
the optimal robot design.

The insphere and midsphere, tangent to the centre of each face and to the midpoint of each edge,
respectively, are concentric for all platonic solids and thus can be used for calculating the rotation angle.
The inradius rin and midradius rmid are the radii of the insphere and midsphere, respectively, which are
proportional to the edge length of a polyhedron’s surfaces, listed in Table S1.

Platonic Solids Face Shape Number of Faces, N Inradius, rin Midradius, rmid

Tetrahedron Triangle 4 0.204 0.354
Cube Square 6 0.500 0.707
Octahedron Triangle 8 0.408 0.500
Dodecahedron Pentagon 12 1.114 1.309
Icosahedron Triangle 20 0.756 0.809

Table S1. Face shape, the number of faces, the inradius and the midradius of each platonic solid in unit length.
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Figure S2. (A) Inradius and midradius of the tetrahedron and (B) the rotation angle related to the inradius
and midradius.

The analysis model is exemplified in Figure S2 using a tetrahedron as an example. The rotation angle α
can be calculated with the use of the inradius and midradius as follows.

α = 90− arcsin(
rin
rmid

) (S1)

Besides the rotation angle α, the distance between the turning edge and the centre of the actuated
actuators, L

′
is used to calculate the actuator volume required to perform turning motion. The actuators

were placed so that two actuators are always used for rolling over the turning edge, as illustrated in Figure
S3.

Figure S3. Allocation of the actuators (blue circles) on the bottom surface for all faces found in platonic
solids: (A) triangle, (B) square and (C) pentagon, where L

′
is the distance between the turning edge (red

line) and the centre of the actuators.

The actuator volume for achieving turning motion is modelled as a spherical cap as illustrated in Figure
S4A (right), which can be derived with the use of the analysis model in Figure S4B as follows.

Given the rotation angle α, the distance between the turning edge and the centre of the actuated actuators
L

′
and the actuator diameter c, where the actuator is allocated from point A to B. Point C is tangent to the

ground surface and assumes that the actuator provides sufficient friction to remain in place during actuation,
and thus the distance from the turning edge to the point touching the ground, C, is equal to L

′
. Let a, b and

c be the length between points BC, AC and AB, respectively, thus the coordinate x and y of point A, B and
C can be derived as follows.
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Figure S4. (A) The side view of the locomoting tetrahedron robot at the resting position (left) and the
turning position (right) and (B) model of inflating actuator to calculate the required actuator volume for
turning motion.

A = ((L
′
− c

2
) cosα, (L

′
− c

2
) sinα) (S2)

B = ((L
′
+
c

2
) cosα, (L

′
+
c

2
) sinα) (S3)

C = (L
′
, 0) (S4)

Therefore, the circumradius R of the inflated actuator can be calculated using the edges of the triangle
ABC as follows.

R =
abc√

(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)
(S5)

with R2 = (R− h)2 + ( c2)
2, then

h = R−
√
R2 − (

c

2
)2 (S6)

Now, we can calculate the actuator’s volume by taking the difference between the volume of a sphere and
the spherical cap,

Vactuator = Vsphere − Vcap =
4

3
πR3 − 1

6
πh(3(

c

2
)2 + h2) (S7)

The energy used to create locomotion can be calculated by the potential energy compared between the
resting and the turning positions presented in Figure S4 as follows. Where H and H

′
are the height of the

robot at the resting and turning positions, which are equal to rin and rmid, respectively. Therefore,

E1 = E2 (S8)

KE + PEresting = PEturning (S9)

Frontiers 3



Supplementary Material

KE = PEturning − PEresting (S10)

KE = mg(H
′
−H) = mg(rmid − rin) (S11)

As a result, the rotation angle, the actuator volume and the energy used to achieve the turning motion for
each platonic solid is presented in Table S2.

Platonic Solids Rotation Angle (◦), α Actuator Volume (m3 ∗ 10−5), V Energy (m ∗ 10−3), E
mg

Tetrahedron 54.73 65.818 30.478
Cube 45.00 14.602 20.711
Octahedron 35.26 3.966 11.789
Dodecahedron 31.72 1.326 9.916
Icosahedron 20.91 0.178 4.106

Table S2. The rotation angle, the actuator volume and the energy of each platonic solid. The volume of the platonic solids are consistent at 1 ∗ 10−3m3 based
on a cube of side length 0.1m.
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