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Motor Performance Measures 

This supplement describes the parameters that we used to measure motor performance. 

Dynamic Time Warping (DTW) 

DTW aligns two time series, in our case the participant’s performance and the skilled 

performance via calculating the optimal match between them. That means for each frame in 

the participant’s movement, DTW calculates at least one corresponding frame in the skilled 

movement and vice-versa (Müller, 2007).  

We performed DTW based on the joint positions. We used all joints, but the root joint, 

as well as three joints in the back (spine markers placed at l2, t5, and t10). We excluded these 

joints as we wanted to mainly focus on the movement of the extremities and the joints in the 

back tended to induce a high level of noise in our setup. DTW in general works as follows: Let 

T𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, Tskilled be two motion capture trajectories which consist of n and m successive 

postures. 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the movement performed by the participant, 𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the skilled 

movement. Each posture of a trajectory consists of 𝑘𝑘 translations, one for each tracked joint. 

For instance, 𝒙𝒙𝑠𝑠 denotes the translation of joint 𝑑𝑑. To perform DTW, a n × m local cost matrix 

𝐌𝐌 is constructed. Each element (i, j) of this matrix corresponds to the distances between the 

postures T𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(i) and T𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(j): 

𝐌𝐌(i, j) = � ||𝒙𝒙𝑠𝑠(𝑖𝑖) − 𝒙𝒙𝑠𝑠(𝑗𝑗)||.
k

d=1

 

Based on dynamic programming, we determined an optimal path of corresponding frames 

through this matrix according to (Müller, 2007).  

We extracted two features based on DTW: the temporal as well as the spatial error. The 

temporal error was calculated as follows: For each frame in a participant’s movement, we 



calculated the change in the temporal offset from the performed movement to the skilled 

movement. Example: If frame 200 of the participant’s movement mapped to frame 210 of the 

skilled movement and frame 201 of the participant’s movement mapped to frame 215, the error 

at frame 201 was -4. Finally, we returned the RMSE of these shifts. To be more specific, we 

performed the following calculation: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑠𝑠𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑠𝑠 =  �
1

|𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|
� ��𝑓𝑓 − 𝑤𝑤(𝑓𝑓)� − �(𝑓𝑓 − 1) − 𝑤𝑤(𝑓𝑓 − 1)��

2
|𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|

𝑓𝑓=1

�

1/2

.  

Here, 𝑤𝑤(𝑓𝑓) is the frame number of the skilled movement that was mapped on frame number 𝑓𝑓 

of the participant’s movement according to the frame-wise correspondences calculated by 

DTW. If, according to the optimal path, multiple frames of the skilled movement mapped on 

the same frame of the participant’s movement, we selected the one that is in the middle of these 

frames on the temporal axis. The spatial error was the averaged value of 𝑴𝑴 on the optimal path:  

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 =
1

|𝑝𝑝𝑝𝑝𝑝𝑝ℎ|
� 𝑴𝑴(𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑝𝑝))

|𝑝𝑝𝑝𝑝𝑝𝑝ℎ|

𝑝𝑝=1

. 

Here, 𝑝𝑝𝑝𝑝𝑝𝑝ℎ specifies the optimal path through 𝑴𝑴 that was calculated by DTW. Each entry 𝑝𝑝 is 

a tuple (𝑖𝑖, 𝑗𝑗) 𝜖𝜖 𝑝𝑝𝑝𝑝𝑝𝑝ℎ that contains the frame numbers 𝑖𝑖 and 𝑗𝑗 of the trajectories T𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 

Tskilled that correspond to each other, i.e., that lie on the optimal path. |𝑝𝑝𝑝𝑝𝑝𝑝ℎ| denotes the length 

of the optimal path. See (Müller, 2007) for a formal definition of 𝑝𝑝𝑝𝑝𝑝𝑝ℎ. 

Center of mass at the deepest point 

We estimated a simplified center of mass based on the centroid of the joint positions. More 

specifically, the center of mass of the participant’s trajectory at the deepest point of the squat 

was calculated as follows: 



𝒄𝒄𝒄𝒄𝒄𝒄 =
1
𝑘𝑘
�𝐱𝐱d(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝)
𝑠𝑠

𝑠𝑠=1

. 

Here, 𝑘𝑘 denotes the number of joints and 𝒙𝒙𝑠𝑠(𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝) denotes the translation of joint 𝑑𝑑 at the 

deepest point (frame 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝) of the squat. 

Principal Component Analysis 

Principal Component Analysis (PCA) is typically used in the field of dimensionality reduction 

(Bishop, 2006). For a given data set, it searches for a set of linear combinations that capture a 

given amount of variance inside the data. It reduces the high-dimensional data set into a smaller 

number of structural components. We determined the number of principal components needed 

to cover 85% of the variance inside our data for each participant and each test phase (pre-test, 

post-test, retention-test). To focus only on the spatial properties, we first performed DTW 

between each trajectory of a participant 𝑇𝑇𝑝𝑝 and the first trajectory of this participant in the given 

phase 𝑇𝑇0. We used the correspondence path determined by DTW to warp each movement into 

the timing of 𝑇𝑇0: For each frame of 𝑇𝑇𝑝𝑝, the corresponding frame in 𝑇𝑇0 was extracted. Next, we 

constructed a feature vector that consisted of the joint translations of these frames. This vector 

had the length 3𝑘𝑘|𝑇𝑇0|, where 𝑘𝑘 was the number of joints. |𝑇𝑇0| was the length of trajectory 𝑇𝑇0. 

Then we calculated the PCA based on the feature vectors for each participant and the test phases 

(pre-test, post-test, retention-test). 
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