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Appendixes 

Appendix 1: Derivation of the dynamics of the CIP system (eq. 1) 

A simple way for deriving the CIP equations of motion is to follow the Lagrangian formulation for a 2 DoFs 

system with conservative driving forces: 

 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞̇𝑖
−
𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖       𝑖 = 1,2 (A1) 

characterized by two generalized coordinates [𝑞1 = 𝜃, 𝑞2 = 𝑥], the corresponding generalized forces 

[𝑄1 = 0,𝑄2 = 𝑓(𝑡)], and the Lagrangian function:  𝐿(𝑞, 𝑞̇) = 𝐾(𝑞, 𝑞̇) − 𝑉(𝑞). 

By taking into account the parameters of the CIP model defined in figure 1, we can express the Lagrangian 

function in a straightforward manner: 

𝐾(𝑞, 𝑞̇) =
1

2
𝑀𝑥̇2 +

1

2
𝑚(𝑥̇𝑐𝑜𝑚

2 + 𝑦̇𝑐𝑜𝑚
2 ) +

1

2
𝐼𝑐𝑜𝑚𝜃̇

2   with   𝐼𝑐𝑜𝑚 =
1

12
𝑚𝐿2   

𝑉(𝑞) = 𝑚𝑔𝑦𝑐𝑜𝑚 = 𝑚𝑔 
𝐿

2
cos𝜃 

{
𝑥̇𝑐𝑜𝑚 = 𝑥̇ +

𝐿

2
cos𝜃 𝜃̇

𝑦̇𝑐𝑜𝑚 = −
𝐿

2
sin𝜃  𝜃̇

    𝐿(𝑞, 𝑞̇) =
1

2
(𝑀 +𝑚)𝑥̇2 +

1

6
𝑚𝐿2 𝜃̇2 +

1

2
𝑚𝐿cos𝜃 𝑥̇ 𝜃̇ − 𝑚𝑔

𝐿

2
cos𝜃 

Finally, by plugging this expression of the Lagrangian function into equation A1 we can derive immediately the 

equation of motion of the CIP, which is a second order non-linear ODE:  
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[𝜃̈
𝑥̈
] = [

𝐴11(𝜃)      𝐴12(𝜃)
𝐴21(𝜃)     𝐴22(𝜃)

] [
sin𝜗
𝑓
] 

{
 
 
 
 

 
 
 
 𝐴11 =

1.5 

𝐿 (𝑀 +𝑚(1 − 0.75  cos2𝜃))
((𝑀 +𝑚)𝑔 − 0.5 𝑚𝐿 𝜃̇2cos𝜃)

𝐴12 =
−1.5 cos𝜃

𝐿 (𝑀 +𝑚(1 − 0.75  cos2𝜃))
                                                          

𝐴21 =
1

𝑀 +𝑚(1 − 0.75  cos2𝜃)
(0.5 𝑚 𝐿 𝜃̇2 − 0.75 𝑚 𝑔 cos𝜃)         

𝐴22 =
1

𝑀 +𝑚(1 − 0.75  cos2𝜃)
                                                                 

 

(A2) 

 

Appendix 2: Kinematics of the off-phase for the linearized model 

When the delayed feedback control is switched off the linearized equation of the pendulum component of the 

CIP model is reduced to  

𝜃̈ = 𝐴11 𝜃 (A3) 

Such model has two real eigenvalues of opposite sign 𝜆1,2 = ±√𝐴11 which characterize a saddle instability. The 

corresponding eigenvectors identify, in the phase plane (𝜃  𝑣𝑠.  𝜃̇), an unstable manifold (𝜃̇ = √𝐴11𝜃), and a 

stable manifold (𝜃̇ = −√𝐴11𝜃). See figure A1. 

In order to determine the trajectories generated by this model, starting from a generic initial position in the 

phase plane (𝜃𝑜𝑓𝑓,   𝜃̇𝑜𝑓𝑓 at time 𝑡 = 𝑡𝑜𝑓𝑓), we can consider the general solution of eq. A3: 

𝜃(𝑡) = 𝑐1𝑒
√𝐴11  (𝑡−𝑡𝑜𝑓𝑓) + 𝑐2 𝑒−√𝐴11  (𝑡−𝑡𝑜𝑓𝑓) (A4) 

and specialize it to the starting condition:  

{
 
 

 
 𝑐1 =

𝜃̇𝑜𝑓𝑓 + 𝜃𝑜𝑓𝑓√𝐴11

2√𝐴11

𝑐2 =
−𝜃̇𝑜𝑓𝑓 + 𝜃𝑜𝑓𝑓√𝐴11

2√𝐴11

 (A5) 
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We can then derive four families of trajectories in the phase plane of the system: two families of hyperbolic 

trajectories symmetric with respect to the horizontal axis and two families of hyperbolic trajectories symmetric 

with respect to the vertical axis 

𝜃̇ = ±√𝐴11(𝜃
2 − 𝜃𝑜𝑓𝑓

2) + 𝜃̇𝑜𝑓𝑓
2

 (A6) 

These curves are separated by two asymptotic lines  that correspond, respectively, to the unstable and  stable 

manifolds defined above.  

In general, if the initial position of the state vector is in the second or fourth quadrant of the phase plane, one 

part of each trajectory is converging to the saddle equilibrium point (the origin) and the other part is diverging, 

with a point at minimum distance where the trajectory intersects one of the two axes separated by a cross 

point, intersecting either the y-axis or the x-axis, at time 𝑡𝑐. 

 

Computation of the time to cross. 

Let us first define the following parameter that characterizes the starting point [𝜃𝑜𝑓𝑓,   𝜃̇𝑜𝑓𝑓] of a hyperbolic 

trajectory and is a measure of the distance of this point from the stable manifold ( 𝜃̇ = −√𝐴11 𝜃 ): 

𝛾𝑜𝑓𝑓   = |
𝜃̇𝑜𝑓𝑓

𝜃𝑜𝑓𝑓√𝐴11
| (A7) 

If 𝛾𝑜𝑓𝑓 = 1 the starting point is on the stable manifold, if 𝛾𝑜𝑓𝑓 > 1 it is outside, and if  𝛾𝑜𝑓𝑓 < 1 it is inside.  

By considering eq. A4 and A5, for the trajectories symmetric with respect to the vertical axis (𝛾𝑜𝑓𝑓 > 1) we can 

write 𝜃(𝑡𝑐) = 𝑐1𝑒
√𝐴11   (𝑡𝑐−𝑡𝑜𝑓𝑓) + 𝑐2 𝑒−√A11   (𝑡𝑐−𝑡𝑜𝑓𝑓) = 0   𝑐1𝑒

√𝐴11   (𝑡𝑐−𝑡𝑜𝑓𝑓) = −𝑐2 𝑒−√𝐴11   (𝑡𝑐−𝑡𝑜𝑓𝑓)  

𝑒2√𝐴11   (𝑡𝑐−𝑡𝑜𝑓𝑓) = −
𝑐2

𝑐1
 and then we get the following explicit expression:

 
𝑡𝑐 − 𝑡𝑜𝑓𝑓 = ∆𝑡𝑐𝑟𝑜𝑠𝑠 =

1

2√𝐴11
 ln (

𝛾𝑜𝑓𝑓 + 1

𝛾𝑜𝑓𝑓 − 1
) (A8) 

For the trajectories symmetric with respect to the horizontal axis (𝛾𝑜𝑓𝑓 < 1 ) and we get a similar expression: 
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∆𝑡𝑐𝑟𝑜𝑠𝑠 =
1

2√𝐴11
 ln (

1 + 𝛾𝑜𝑓𝑓

1 − 𝛾𝑜𝑓𝑓
) (A9) 

It is also possible to combine the two expressions of the crossing time in a single expression, whatever the 

value of 𝛾𝑜𝑓𝑓: 

∆𝑡𝑐𝑟𝑜𝑠𝑠 =
1

2√𝐴11
 ln (

1 + 𝛾𝑜𝑓𝑓

|1 − 𝛾𝑜𝑓𝑓|
) (A10) 

This time strongly increases as the distance of the starting point from the stable manifold |1 − 𝛾𝑜𝑓𝑓| decreases 

and diverges when it becomes zero. A crucial feature of this expression is that the time to cross does not 

depend on the initial angle per se but  on the “distance” from the stable manifold, measured by the value of 𝛾0 

(the distance is zero if 𝛾𝑜𝑓𝑓=1). Figure 3 plots the time to cross as a function of 𝛾𝑜𝑓𝑓 for various values of the 

length L of the pendulum. The dotted line corresponds to a value of the time to cross of 230 ms. 

Finally, by merging equations A4 and A5, it is possible to write the following formula in closed form 

{
 
 

 
 θ(𝑡) =

𝜃̇𝑜𝑓𝑓 + 𝜃𝑜𝑓𝑓√𝐴11

2√𝐴11
 𝑒√𝐴11 (𝑡−𝑡𝑜𝑓𝑓) +

−𝜃̇𝑜𝑓𝑓 + 𝜃𝑜𝑓𝑓√𝐴11

2√𝐴11
 𝑒−√𝐴11 (𝑡−𝑡𝑜𝑓𝑓)

θ̇(𝑡) =
𝜃̇𝑜𝑓𝑓 + 𝜃𝑜𝑓𝑓√𝐴11

2
 𝑒√𝐴11 (𝑡−𝑡𝑜𝑓𝑓) −

−𝜃̇𝑜𝑓𝑓 + 𝜃𝑜𝑓𝑓√𝐴11

2
 𝑒−√𝐴11 (𝑡−𝑡𝑜𝑓𝑓)

 (A11) 

which describes the full course of the stick trajectory in the off-phase and, in particular, allows to predict the 

state vector at the end of the off-phase, i.e. at 𝑡 = 𝑡𝑜𝑛, as soon as the state vector at the beginning of the off-

phase can be extracted from the short-term sensorimotor memory, i.e. at 𝑡 = 𝑡𝑜𝑓𝑓 + 𝛿. 
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Figure A1. Phase plane characterization of the off-phase dynamics of the stick, highlighting the stable and 

unstable manifolds (colored green and red, respectively), and the four groups of hyperbolic trajectories: 

(𝛾 > 1, 𝜃̇ > 0), (𝛾 > 1, 𝜃̇ < 0), (𝛾 < 1, 𝜃 > 0),  (𝛾 < 1, 𝜃 < 0). 


