Supplementary figure S1. Neuronal responsive firing rate for white noise (blue), 1/f (red) and $1/f^2$ noise (black) with various intensities (82.37, 164.80, 247.23, 329.67, 412.10 and 494.53 pA) and a noisy cutoff frequency of 50 Hz (A), 100 Hz (B), 200 Hz (C) and 500 Hz (D). F_{cut} , cutoff frequency. **Supplementary figure S2.** Plots of reliability vs β for the three types of $1/f^{\beta}$ input noises with a cutoff frequency of 50 Hz (A), 200 Hz (B), and 1000 Hz (C). F_{cut} , cutoff frequency. Supplementary figure S3. Effects of α_m , β_m and β_h on the responsive firing rate of model neurons. (A1-C1) Plots of firing rate vs intensity for white noise (blue), 1/f (red) and 1/f² noise (black) for a normal neuron (dotted line) compared with the results from the model neuron in the case of 2 α_m (solid line, A1), 2 β_m (solid line, B1), 5 β_h (solid line, C1). Fcut = 1000 Hz. (A2-C2) Plots of firing rate vs cutoff frequency for white noise (blue), 1/f (red) and 1/f² noise (black) for a normal neuron (dotted line) compared with the results from the model neuron in the case of 2 α_m (solid line, A2), 2 β_m (solid line, B2), 5 β_h (solid line, C2). Noise $\sigma = 9 \mu A/cm^2$. (A3-C3) Plots of firing rate vs times of α_m (solid line, A3), β_m (solid line, B3) and β_h (solid line, C3) for white noise (blue), 1/f (red) and 1/f² noise (black) for a normal neuron (dotted line) compared with the results from the model neuron. $F_{cut} = 1000 \text{ Hz}$. Noise $\sigma = 9 \mu A/cm^2$.