Supplementary material for "Predicting functional capabilities of host-specific prokaryotic communities associated with Antarctic continental shelf sponges"

Georg Steinert^{1*}, Bernd Wemheuer^{2†}, Dorte Janussen³, Dirk Erpenbeck⁴, Rolf Daniel², Meinhard Simon^{1,5}, Thorsten Brinkhoff¹, Peter J. Schupp^{1,5*}

¹Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26133 Oldenburg, Germany

²Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, 37077 Göttingen, Germany.

³Senckenberg Research Institute and Nature Museum, 60325 Frankfurt a.M., Germany

⁴Department of Earth and Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany ⁵Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University of Oldenburg, 26133 Oldenburg, Germany

[†]Present address: Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

*Corresponding authors

Georg Steinert <u>georg.steinert@uni-oldenburg.de</u> Peter J. Schupp peter.schupp@uni-oldenburg.de

Section 1: Sponge barcoding and morphological taxonomy

For morphological taxonomic identification, the sponge samples stored in 70% EtOH were investigated by light microscopy at the Senckenberg Research Institute and Natural Museum. The photos taken oft he complete sponges directly upon their collection were also used for identification. Skeletal elements (spicules) of the sponges were studied upon preparations following the generally accepted technique of dissolving soft tissue of fragments of sponge in nitric acid; the preparation procedure is described e.g. by Boury-Esnault and Rützler (Boury-Esnault and Rützler, 1997). The spicules were mounted on microscope slides and studied by light microscopy. For the identification relevant literature (Hentschel, 1914; Koltun, 1964; Plotkin and Janussen, 2008) and the World Porifera Database (www.marinespecies.org/porifera/) were consulted. The sponge samples used for morphological identification are housed in the Senckenberg Nature Museum (Frankfurt am Main, Germany).

Extraction, PCR and sequencing

DNA was extracted using Spin Columns (Machery-Nagel) following the manufacturer's protocol. Fragments of the mitochondrial cytochrome oxidase subunit 1 (standard barcoding fragment) and the C-Region of the large nuclear ribosomal subunit (28S) were amplified using the degenerated version of universal barcoding primers dgLCO1490 (GGT CAA CAA ATC ATA AAG AYA TYG G) with dgHCO2198 (TAA ACT TCAG GGT GAC CAA ARA AYC A) (Meyer and Paulay,

2005) and 28S-C2-fwd (GAA AAG AAC TTT GRA RAG AGA GT) with 28S-D2rev (TCC GTG TTT CAA GAC GGG) (Chombard et al., 1998). These two markers are the current standards for sponge DNA barcoding and constitute the currently most used marker for sponge biodiversity assessments (Erpenbeck et al., 2008, 2016). The 15 µL PCR mix consisted of 2.5 µL 5x green GoTaq ® PCR Buffer (Promega Corp, Madison, WI), 2µL 25mM MgCl₂ (Promega Corp, Madison, WI), 1 µL 10mM dNTPs, 1 µL BSA (100µg/ml), 0.5 µL each primer (5µM), 3.9 µL water, 0.1µL GoTaq® DNA polymerase (5u/µl) (Promega Corp, Madison, WI) and 1 µL DNA. Temperature profile comprised an initial denaturation phase of 94°C for 3 min followed by 35 cycles of 30 s denaturation at 94°C, 20 s annealing at 51°C, 60 s elongation at 72°C each and a final elongation at 72°C for 5 min. PCR products were purified with the freeze-squeeze method (Tautz and Renz, 1983) before cycle sequencing with the BigDye-Terminator Mix v3.1 (Applied Biosystems) following the manufacturer's protocol. Both strands of the template were sequenced on an ABI 3730 automated sequencer. Sequences were basecalled, trimmed and assembled in CodonCode Aligner v 3.7.1.1 (www.codoncode.com). Sequences are deposited in NCBI Genbank under accession numbers MH371760 - MH371774.

Phylogenetic analyses were performed after incorporation of all available 28S and CO1 respectively sequences as currently published in NCBI Genbank and the Sponge Genetree Server (www.spongegenetrees.org). Here, secondary structure information has been implemented where feasible as suggested earlier (Erpenbeck et al., 2007). Phylogenetic reconstructions were performed with RAxML 7.2.8 as implemented in GENEIOUS 8.1.6. (http://www.geneious.com) under the GTRCAT model and 100 rapid bootstrap replicates (Kearse et al., 2012).

References

- Boury-Esnault, N., and Rützler, K. (1997). Thesaurus of sponge morphology. *Smithson. Contrib. to Zool.* 596, 1–55.
- Chombard, C., Boury-Esnault, N., and Tillier, S. (1998). Reassessment of homology of morphological characters in tetractinellid sponges based on molecular data. *Syst. Biol.* 47, 351–66. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/12066683.

- Erpenbeck, D., Nichols, S. A., Voigt, O., Dohrmann, M., Degnan, B. M., Hooper, J. N. A., et al. (2007). Phylogenetic analyses under secondary structure-specific substitution models outperform traditional approaches: Case studies with diploblast LSU. *J. Mol. Evol.* 64, 543–557. doi:10.1007/s00239-006-0146-3.
- Erpenbeck, D., Voigt, O., Al-Aidaroos, A. M., Berumen, M. L., Büttner, G., Catania, D., et al. (2016). Molecular biodiversity of Red Sea demosponges. *Mar. Pollut. Bull.* 105, 507–514. doi:10.1016/j.marpolbul.2015.12.004.
- Erpenbeck, D., Voigt, O., Gueltas, M., and Woerheide, G. (2008). The sponge genetree server-providing a phylogenetic backbone for poriferan evolutionary studies. *Zootaxa* 1939, 8–60.
- Hentschel, E. (1914). Monaxone Kieselschwämme und Hornschwämme der Deutschen Südpolar-Expedition 1901–1903. *Dtsch. Südpolar-Expedition, 1901-1903* 15, 35–142.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28, 1647– 1649. doi:10.1093/bioinformatics/bts199.
- Koltun, V. M. (1964). Sponges of the Antarctic. 1 Tetraxonida and Cornacuspongida.

Biol. reports Sov. Antarct. Exped. 2, 6–133.

- Meyer, C. P., and Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. *PLoS Biol.* 3, 1–10. doi:10.1371/journal.pbio.0030422.
- Plotkin, A. S., and Janussen, D. (2008). Polymastiidae and suberitidae (Porifera: Demospongiae: Hadromerida) of the deep Weddell Sea, Antarctic. *Zootaxa* 1866, 95–135.
- Tautz, D., and Renz, M. (1983). An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. *Anal. Biochem.* 132, 14–19. doi:10.1016/0003-2697(83)90419-0.

Supplementary Figure 1. Maximum-likelihood phylogram based on the 28S C-Region obtained from different sponges with the target taxa in red. Numbers following the taxon names are NCBI GenBank accession numbers. Numbers on branches depict bootstrap support > 70. The scale bar depicts substitutions per site.

SMF	Sample
	11647 TB01
	11651 TB05
	11656 TB10
	11657 TB11
	11659 TB13
	11660 TB14
	11662 TB16
	11664 TB18
	11665 TB19
	11666 TB20
	11667 TB21
	11668 TB22
	11673 TB27
	11677 TB31
	11678 TB32

 Supplementary Table 1. Senckenberg Collection Identifiers and sample IDs.

 SME
 Sample

Supplementary	Table 2.	Phylum	rank abso	lute abu	ndance table.
---------------	----------	--------	-----------	----------	---------------

Taxon	Haliclona sp.	Haliclona sp.	<i>Haliclona</i> sp. sum	A. leptoderma	A. leptoderma
Proteobacteria	96	109	205	24	40
Bacteroidetes	37	47	84	9	8
Actinobacteria	7	4	11	12	10
Nitrospinae	1	4	5	2	3
Planctomycetes	2	3	5	0	0
Marinimicrobia_(SAR406_clade)	1	2	3	0	0
Firmicutes	1	5	6	2	0
Acidobacteria	1	0	1	1	0
Chloroflexi	1	0	1	0	5
Verrucomicrobia	1	0	1	0	0
Gemmatimonadetes	0	0	0	0	0
Spirochaetae	0	1	1	0	0
Nitrospirae	1	0	1	0	0
Euryarchaeota	0	0	0	0	0
Microgenomates	0	0	0	0	0
Cyanobacteria	0	0	0	0	0
Thaumarchaeota	0	0	0	0	1
SBR1093	0	0	0	0	1
Aminicenantes	0	0	0	0	0
Tenericutes	1	0	1	0	0
Gracilibacteria	0	0	0	0	0
Parcubacteria	0	0	0	0	0
Fusobacteria	0	0	0	0	0
PAUC34f	0	0	0	0	0
Fibrobacteres	0	0	0	0	0
Ignavibacteriae	0	0	0	0	0
Chlamydiae	0	0	0	0	0
Deferribacteres	0	0	0	0	0
Elusimicrobia	0	0	0	0	0
Lentisphaerae	0	0	0	0	0
TM6_(Dependentiae)	1	0	1	0	0

A. leptoderma sum	H. balfourensis	H. balfourensis					
50	79	120	132	106	551	53	116
5	25	33	52	38	170	33	60
15	27	43	58	22	187	2	12
1	5	6	6	7	30	2	5
1	5	9	5	9	29	5	9
0	1	5	5	1	12	0	1
0	2	1	3	7	15	1	0
6	0	1	6	2	16	0	0
4	1	2	2	0	14	0	0
0	0	2	0	0	2	0	2
1	1	1	4	1	8	0	1
0	1	1	1	0	3	0	1
0	0	0	1	0	1	0	1
0	0	0	0	0	0	0	0
0	0	0	1	1	2	0	1
0	0	0	0	0	0	0	0
0	0	0	1	1	3	0	0
1	1	0	0	0	3	0	0
0	0	0	1	1	2	0	0
0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0
0	0	0	1	0	1	0	0
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0

H. balfourensis sum	I. bentarti	I. bentarti	I. bentarti	I. bentarti	<i>I. bentarti</i> sum	Seawater	Seawater	Seawater	Seawater	Seawater
169	27	78	37	39	181	40	38	86	56	53
93	20	57	49	24	150	37	42	44	47	51
14	4	5	6	6	21	2	4	6	6	3
7	0	4	0	0	4	2	2	4	2	0
14	1	6	0	1	8	0	0	0	0	2
1	0	0	0	0	0	2	2	4	5	1
1	6	11	2	6	25	0	0	0	1	1
0	1	1	1	1	4	0	0	0	0	1
0	0	0	0	0	0	1	0	1	1	1
2	0	0	1	0	1	0	0	0	3	0
1	0	1	0	0	1	0	0	0	1	0
1	0	4	0	1	5	0	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

Seawater sum	total sum							
69	61	62	58	73	76	65	737	1843
49	59	43	52	64	58	59	605	1102
5	5	4	4	4	5	4	52	285
3	4	4	1	1	4	2	29	75
1	0	0	1	2	0	0	6	62
3	1	3	5	2	6	1	35	51
0	0	0	0	1	0	0	3	50
0	0	0	0	0	0	0	1	22
1	0	0	0	0	1	0	6	21
1	0	0	1	2	0	0	7	13
0	0	0	0	0	0	0	1	11
0	0	0	0	0	0	0	0	10
0	0	0	0	0	0	0	0	4
0	0	0	3	0	0	0	4	4
0	0	0	0	0	0	0	0	3
0	0	0	0	1	2	0	3	3
0	0	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	1	1
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1

Supplementary Table 3. Kruskal-Wallis Sum Test and pairwise Dunn Test for the OTU richness, Phylogenetic diversity PD, and Inverse Simpson D-1 alpha-diversity indices.

Kruskal-Wallis values are chi-squared	χ^2 , degrees of freedom <i>df</i> , and <i>p</i> values.
---------------------------------------	--

Dunn Test values are Z score, unadjusted p value, and Benjamini-Hochberg adjusted p values.

	Kruskal-Wallis Rank Sum Test	χ2	df	<i>p</i> -value
	OTU richness	3.60	4	0.462
	Dunn Test	Ζ	<i>p</i> .unadj	<i>p</i> .adj
	A. leptoderma - Haliclona sp.	-0.94	0.346	0.576
	A. leptoderma - H. balfourensis	-0.31	0.753	0.753
s	Haliclona sp H. balfourensis	0.50	0.614	0.768
nes	A. leptoderma - I. bentarti	1.21	0.228	0.759
chı	Haliclona sp I. bentarti	1.75	0.081	0.809
л. Г	H. balfourensis - I. bentarti	1.16	0.244	0.611
)T(A. leptoderma - seawater	0.42	0.675	0.750
0	Haliclona sp seawater	1.25	0.211	1.000
	H. balfourensis - seawater	0.59	0.554	0.792
	I. bentarti - seawater	-0.96	0.335	0.670
	Kruskal-Wallis Rank Sum Test	χ2	df	<i>p</i> -value
	Phylogenetic diversity PD	10.00	4	0.040
	Dunn Test	Ζ	<i>p</i> .unadj	<i>p</i> .adj
\Box	A. leptoderma - Haliclona sp.	-2.33	0.020	0.196
/ Pl	A. leptoderma - H. balfourensis	-2.18	0.029	0.098
sity	Haliclona sp H. balfourensis	0.13	0.900	1.000
ver	A. leptoderma - I. bentarti	-0.17	0.863	1.000
di	Haliclona sp I. bentarti	2.04	0.042	0.083
stic	H. balfourensis - I. bentarti	1.89	0.059	0.098
ene	A. leptoderma - seawater	-0.36	0.719	1.000
log	Haliclona sp seawater	2.23	0.026	0.130
hy]	H. balfourensis - seawater	2.06	0.039	0.098
	I. bentarti - seawater	-0.11	0.913	0.913
	Kruskal-Wallis Rank Sum Test	χ2	df	<i>p</i> -value
	Phylogenetic diversity PD	19.13	4	< 0.001
	Dunn Test	Ζ	<i>p</i> .unadj	<i>p</i> .adj
	A. leptoderma - Haliclona sp.	-3.11	0.002	0.019
	A. leptoderma - H. balfourensis	-1.85	0.064	0.107
пD	Haliclona sp H. balfourensis	1.01	0.313	0.392
[OS	A. leptoderma - I. bentarti	0.19	0.846	0.940
du	Haliclona sp I. bentarti	3.02	0.003	0.008
S	H. balfourensis - I. bentarti	1.85	0.064	0.127
rse	A. leptoderma - seawater	-3.03	0.002	0.012
nve	Haliclona sp seawater	1.37	0.169	0.242
II	H. balfourensis - seawater	0.05	0.956	0.956
	I. bentarti - seawater	-2.71	0.007	0.017

Supplementary Table 4. Full list of LEFSE significant predicted pathways with source (Environment), LDA effect size and p values.

KEGG Pathway	Environment	Effect size	p value
ko00524_Butirosin_and_neomycin_biosynthesis	Antarctotetilla leptoderma	2.026296592	0.003517133
ko04727_GABAergic_synapse	Antarctotetilla leptoderma	2.368294939	0.000116
ko00030_Pentose_phosphate_pathway	Antarctotetilla leptoderma	3.087554963	0.006533041
ko00643_Styrene_degradation	Antarctotetilla leptoderma	2.427082746	0.001787937
ko00500_Starch_and_sucrose_metabolism	Antarctotetilla leptoderma	3.936780033	0.000279778
ko04141_Protein_processing_in_endoplasmic_reticulum	Antarctotetilla leptoderma	2.537286149	0.000421527
ko03410_Base_excision_repair	Antarctotetilla leptoderma	2.813844487	0.000120536
ko00053_Ascorbate_and_aldarate_metabolism	Antarctotetilla leptoderma	2.728472589	0.000178883
ko04940_Type_I_diabetes_mellitus	Antarctotetilla leptoderma	2.283259258	0.000580683
ko00364_Fluorobenzoate_degradation	Antarctotetilla leptoderma	2.227002669	0.000900738
ko03040_Spliceosome	Antarctotetilla leptoderma	2.149156841	0.001492704
ko00785_Lipoic_acid_metabolism	Antarctotetilla leptoderma	2.625711975	0.001299006
ko00680 Methane metabolism	Antarctotetilla leptoderma	3.342538625	0.000190814
ko00020 Citrate cycle TCA cycle	Antarctotetilla leptoderma	2.760652549	0.000359519
ko00521 Streptomycin biosynthesis	Antarctotetilla leptoderma	2.828712451	0.000796835
ko00450 Selenocompound metabolism	Antarctotetilla leptoderma	2.696802592	0.001981919
ko00473 D Alanine metabolism	Antarctotetilla leptoderma	3.062663226	0.000116
ko04122_Sulfur relay_system	Antarctotetilla leptoderma	2.898743054	0.00180802
ko00281 Geraniol degradation	Antarctotetilla leptoderma	2.708902593	0.009864855
ko00710 Carbon fixation in photosynthetic organisms	Antarctotetilla leptoderma	2.677981744	0.000465904
ko00561 Glycerolipid metabolism	Antarctotetilla leptoderma	2 416077404	0 000963954
ko03030 DNA replication	Antarctotetilla leptoderma	2 632737971	0.022911123
ko00010 Glycolysis Glyconeogenesis	Antarctotetilla lentoderma	2 87397348	0.000136986
ko00750 Vitamin B6 metabolism	Antarctotetilla lentoderma	2 963046844	0.000410997
ko00520 Amino sugar and nucleotide sugar metabolism	Antarctotetilla leptoderma	3 476857892	0.000353711
ko00926_Ammo_sugar_and_nucleorde_sugar_metabolism	Antarctotetilla leptoderma	2 453208353	0.01972158
kollo51 Biogunthesis of ansamycing	Antarctotetilla leptoderma	2.435208555	0.000168553
ko00280 Valing lauging and isolauging degradation	Antarctotetilla leptoderma	2.000001449	0.000108555
ko01057 Diosynthesis of type II polykatida products	Antarctotetilla leptoderma	2 002057608	0.0018523
ko01057_Biosynthesis_of_type_n_potyketide_products	Antarciolettila lepioderma	2.002037098	0.0018323
ko00640 Propagagata matchalism	Antarctotetilla leptoderma	2 854646565	0.000504478
ko00040 Partosa and gluguranata interconversions	Antarciolettilla lepioderma	2.854646505	0.001258255
ko00040_rentose_and_guturionate_interconversions	Antarciolettila lepioderma	3.180323013	0.001238233
koosoos_kibosome_biogenesis_in_eukaryotes	Antarcioletilla lepioderma	2.402322839	0.000127943
koou460_Cyanoamino_acid_metabolism	Antarctotetilla leptoderma	2.001995358	0.0001/3221
	Antarcioletilla lepioderma	2.424431749	0.002297836
kouus62_inositoi_phosphate_metabolism	Antarctotetilla leptoderma	3.263219906	0.000192441
	Antarcioletilla lepioderma	3.031396/11	0.000301807
kooo909_Sesquiterpenoid_and_triterpenoid_biosynthesis	Antarctotetilla leptoderma	2.663602143	0.000301289
	Antarcioletilla lepioderma	2.717343621	0.000174565
	Antarctotetilla leptoderma	2.704988029	0.006508727
kouu603_Giycospningolipid_biosynthesis_globo_series	Antarctotetilla leptoderma	2.1602/3521	0.0001905
	Antarcioletilla lepioderma	3.188051829	0.000346932
k002040_Flagellar_assembly	Antarctotetilla leptoderma	3.584550623	0.0001/3086
	Antarcioletilla lepioderma	2.41/113639	0.000312975
ko00900_lerpenoid_backbone_biosynthesis	Antarctotetilla leptoderma	3.0/4155697	0.003022969
K000400_Phenylalanine_tyrosine_and_tryptophan_biosynthesis	Antarctotetilla leptoderma	3.061424715	0.004743337
ko05152_Tuberculosis	Antarctotetilla leptoderma	2.482032249	0.000116
KOUU522_Biosynthesis_ot_12_14_and_16_membered_macrolides	Antarctotetilla leptoderma	2.661641063	0.000292778
kouu930_Caprolactam_degradation	Antarctotetilla leptoderma	2.114480702	0.032275239
ko03440_Homologous_recombination	Antarctotetilla leptoderma	3.12967074	0.003769628
ko00604_Glycosphingolipid_biosynthesis_ganglio_series	Antarctotetilla leptoderma	2.169664954	0.000224197
ko00471_D_Glutamine_and_D_glutamate_metabolism	Antarctotetilla leptoderma	2.199155019	0.002233063
ko00860_Porphyrin_and_chlorophyll_metabolism	Antarctotetilla leptoderma	3.466949473	0.000627635
ko00430_Taurine_and_hypotaurine_metabolism	Antarctotetilla leptoderma	2.810257513	0.000446263
ko00550_Peptidoglycan_biosynthesis	Antarctotetilla leptoderma	3.270936398	0.001165532
ko00523 Polyketide sugar unit biosynthesis	Antarctotetilla leptoderma	2.27497738	0.028746621

ko00300_Lysine_biosynthesis	Haliclona sp.	2.86052389	0.027310907
ko00260_Glycine_serine_and_threonine_metabolism	Haliclona sp.	3.747364997	0.00027944
ko00630_Glyoxylate_and_dicarboxylate_metabolism	Haliclona sp.	3.085845855	0.001171996
ko00770 Pantothenate and CoA biosynthesis	Haliclona sp.	2.711675701	0.045908782
ko05204_Chemical_carcinogenesis	Haliclona sp.	2.40432607	0.000822784
ko00250 Alanine aspartate and glutamate metabolism	Haliclona sp.	2.828214501	0.044516295
ko00970 Aminoacyl tRNA biosynthesis	Haliclona sp.	3.584415398	0.022489798
ko00270 Cysteine and methionine metabolism	Haliclona sp.	3.253026336	0.000520236
ko03010 Ribosome	Haliclona sp.	3.168961776	0.030870305
ko00624 Polycyclic aromatic hydrocarbon degradation	Haliclona sp.	2.369783458	0.005563896
ko00670 One carbon pool by folate	Haliclona sp.	2 75265269	0 000383645
ko00980 Metabolism of xenobiotics by cytochrome P450	Haliclona sp.	2 355986502	0.001792937
ko00740 Riboflavin metabolism	Haliclona sp.	2.652672534	0.009691343
ko00/10_Klobiacin_hiosunthesis	Haliclona sp	2 178585207	0.022086641
ko02060 Protein evport	Haliclona sp	2.176365207	0.040042288
koosoo_riotem_export	Hamaninalla kalfarmanaia	2.885210420	0.040945288
koooso4_orycerophosphonpid_inetabolism	Homaxinella balfourensis	2.401057208	0.000423008
koosis2_saimonella_intection	Homaxinella baljourensis	2.491957208	0.002840256
kooos40_Lipopoiysaccharide_biosynthesis	Homaxinella baljourensis	3.029597595	0.000427332
ko04/23_Retrograde_endocannabinoid_signaling	Homaxinella balfourensis	2.252818784	0.00050453
ko00920_Sultur_metabolism	Homaxinella balfourensis	3.0980/5682	0.000141965
kou4626_Plant_pathogen_interaction	Homaxinella balfourensis	2.649251933	0.000635373
ko04910_Insulin_signaling_pathway	Homaxinella balfourensis	2.143449422	0.022665796
koos142_Chagas_disease_American_trypanosomiasis_	Homaxinella balfourensis	2.291//3263	0.001156935
kool053_Biosynthesis_ot_siderophore_group_nonribosomal_peptides	Homaxinella balfourensis	2.840851031	0.001399349
ko00982_Drug_metabolism_cytochrome_P450	Homaxinella balfourensis	2.4/399408	0.00130354
ko01040_Biosynthesis_ot_unsaturated_fatty_acids	Homaxinella balfourensis	2.616280746	0.000933049
ko05143_African_trypanosomiasis	Homaxinella balfourensis	2.34/319054	0.002623891
ko00253_Tetracycline_biosynthesis	Homaxinella balfourensis	2.342004552	0.001220219
ko00330_Arginine_and_proline_metabolism	Homaxinella balfourensis	3.364422005	0.000196637
ko05133_Pertussis	Homaxinella balfourensis	3.065374204	0.00160875
ko02060_Phosphotransferase_system_PTS_	Homaxinella balfourensis	2.550769566	0.002610894
ko00590_Arachidonic_acid_metabolism	Homaxinella balfourensis	2.168267418	0.000516497
ko00910_Nitrogen_metabolism	Isodictya bentarti	3.665572405	0.000189923
ko03070_Bacterial_secretion_system	Isodictya bentarti	3.638523224	0.000572376
ko00130_Ubiquinone_and_other_terpenoid_quinone_biosynthesis	Isodictya bentarti	2.804189251	0.006634486
ko00623_Toluene_degradation	Isodictya bentarti	2.695007586	0.00020129
ko03450_Non_homologous_end_joining	Isodictya bentarti	2.289171511	0.000473656
ko00960_Tropane_piperidine_and_pyridine_alkaloid_biosynthesis	Isodictya bentarti	2.341289329	0.009034081
ko00622_Xylene_degradation	Isodictya bentarti	2.306673884	0.004988143
ko04112_Cell_cycle_Caulobacter	Isodictya bentarti	3.425101076	0.001570221
ko00620_Pyruvate_metabolism	Isodictya bentarti	2.71031394	0.000390309
ko00510_N_Glycan_biosynthesis	Isodictya bentarti	2.762894152	0.002481636
ko04113_Meiosis_yeast	Isodictya bentarti	2.524470781	0.000751958
ko00361_Chlorocyclohexane_and_chlorobenzene_degradation	Isodictya bentarti	2.206931264	0.013687931
ko00621_Dioxin_degradation	Isodictya bentarti	2.32250844	0.006697978
ko02030_Bacterial_chemotaxis	Isodictya bentarti	3.634426447	0.000229039
ko05111_Vibrio_cholerae_pathogenic_cycle	Isodictya bentarti	3.075435091	0.002128904
ko00650_Butanoate_metabolism	Isodictya bentarti	2.868720939	0.004770695
ko00625_Chloroalkane_and_chloroalkene_degradation	Isodictya bentarti	2.600628014	0.000802371
ko04722_Neurotrophin_signaling_pathway	Isodictya bentarti	2.181945431	0.000981373
ko03320_PPAR_signaling_pathway	Isodictya bentarti	2.304669513	0.005393114
ko04920_Adipocytokine_signaling_pathway	Isodictya bentarti	2.209654034	0.002107978
ko04146_Peroxisome	Isodictya bentarti	2.449335599	0.000657973
ko00190_Oxidative_phosphorylation	Isodictya bentarti	3.370133473	0.000340783
ko05120_Epithelial_cell_signaling_in_Helicobacter_pylori_infection	Isodictya bentarti	2.636187747	0.000338266
ko02020_Two_component_system	Isodictya bentarti	4.260189224	0.001585065
ko03013_RNA_transport	Isodictya bentarti	2.597651684	0.000328946
ko00071_Fatty_acid_metabolism	Isodictya bentarti	2.908408498	0.014666447
ko00626 Naphthalene degradation	Isodictva bentarti	2.392729095	0.012995034

ko01054_Nonribosomal_peptide_structures	Isodictya bentarti	3.313356125	0.000511905
ko00642_Ethylbenzene_degradation	Isodictya bentarti	2.496560251	0.000714211
ko00791_Atrazine_degradation	Isodictya bentarti	2.334475324	0.002856058
ko04011_MAPK_signaling_pathway_yeast	seawater	2.156047255	0.000116
ko00351_DDT_degradation	seawater	2.162343221	0.000143278
ko04210_Apoptosis	seawater	2.413247128	0.000143614
ko00311_Penicillin_and_cephalosporin_biosynthesis	seawater	2.702087606	0.000218508
ko05010_Alzheimers_disease	seawater	2.41369667	0.00018417
ko04142_Lysosome	seawater	2.721643743	0.000344505
ko04621_NOD_like_receptor_signaling_pathway	seawater	2.277385225	0.000138218
ko00830_Retinol_metabolism	seawater	2.308615134	0.000160993
ko00340_Histidine_metabolism	seawater	3.175578038	0.000258335
ko00480_Glutathione_metabolism	seawater	3.186072653	0.000123882
ko00051_Fructose_and_mannose_metabolism	seawater	3.090419512	0.001463362
ko00061_Fatty_acid_biosynthesis	seawater	3.234571754	0.000208764
ko03018_RNA_degradation	seawater	3.520574981	0.000133671
ko00240_Pyrimidine_metabolism	seawater	3.426068422	0.000521354
ko00531_Glycosaminoglycan_degradation	seawater	2.564094391	0.000381241
ko00052_Galactose_metabolism	seawater	2.84091012	0.001248239
ko00790_Folate_biosynthesis	seawater	2.873159008	0.030684242
ko00600_Sphingolipid_metabolism	seawater	2.733493726	0.000282717
ko00720_Carbon_fixation_pathways_in_prokaryotes	seawater	2.727168216	0.01981089
ko04974_Protein_digestion_and_absorption	seawater	2.786952103	0.000145119
ko00591_Linoleic_acid_metabolism	seawater	2.644172126	0.000200733
ko00780_Biotin_metabolism	seawater	3.058539963	0.006555814
ko00230_Purine_metabolism	seawater	3.373670958	0.000318615
ko00072_Synthesis_and_degradation_of_ketone_bodies	seawater	2.070875304	0.00075913
ko00312_beta_Lactam_resistance	seawater	2.384678627	0.000324215
ko00360_Phenylalanine_metabolism	seawater	3.070936787	0.001124029
ko00983_Drug_metabolism_other_enzymes	seawater	2.426701581	0.000232674
ko00350_Tyrosine_metabolism	seawater	2.719568702	0.002922343
ko05150_Staphylococcus_aureus_infection	seawater	2.345876301	0.000205091
ko00380_Tryptophan_metabolism	seawater	3.011689625	0.000229039
ko05016_Huntingtons_disease	seawater	2.225191105	0.000425023
ko05340_Primary_immunodeficiency	seawater	2.124826667	0.000126957
ko05100_Bacterial_invasion_of_epithelial_cells	seawater	2.810492641	0.000805531
ko00363_Bisphenol_degradation	seawater	2.517148438	0.001189779
ko03430_Mismatch_repair	seawater	2.90405837	0.000265051
ko00140_Steroid_hormone_biosynthesis	seawater	2.462393505	0.000248673
ko00310_Lysine_degradation	seawater	2.967693221	0.000159339
ko00511_Other_glycan_degradation	seawater	2.867027068	0.000588806
ko02010_ABC_transporters	seawater	3.758107276	0.013936637
ko00633_Nitrotoluene_degradation	seawater	2.539710942	0.000272975
ko00440_Phosphonate_and_phosphinate_metabolism	seawater	2.665376505	0.000171591
ko00906_Carotenoid_biosynthesis	seawater	2.705035554	0.006521683