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S1 Generalized logistic function with additive term
Here we show the importance of proper decoupling of the noise and neuronal sig-
nal in the mathematical description, and how the naive approach of simply using
an additional noise term introduces a measurement repetition dependency in the
threshold estimates.

In contrast to the fit function described in the main paper, the data could also
be fitted with a generalized logistic function with constant offset as shown in (equ.
S1.1) instead of adding the squared noise and calculating the square root (cf. equ.
(1)).

f(x) =
a

1 + e−
x−b
c

+ σ (S1.1)

Note that the noise amplitude σ is no free parameter to be fitted but set to a
constant value extracted from the data as described in the main paper (black dashed
line in Suppl. Fig. 1). Trivially a noise dependent criterion (cf. equ. S1.2) such as
the 2σ criterion leads to a divergence of the determined threshold as a function of
the number of measurement repetitions (cf. Suppl. Fig. 1c) in analogy to Fig. 2B.

tσ = −c · ln
(a
σ
− 1
)
+ b (S1.2)

However, it can be shown that even the 5% criterion leads to a monotonic
decrease of the determined threshold as a function of the applied measurement rep-
etitions (i.e. the sample size, cf. Suppl. Fig. 1). Nevertheless, it has to be considered
that in contrast to the 2σ criterion the threshold as a function of the number of
measurement repetitions saturates at a certain value and does not diverge. Thus,

1



Sensory Threshold Estimation Schilling et al.

the threshold for a real measurement is systematically overestimated compared to
the case of no measurement noise. This limitation can be overcome by using the fit
function described in the main paper (cf. equ. (1)).
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Suppl. Fig. 1 | Schematic representation of the fitted generalized logistic function.
a, Schematic generalized logistic function which is fitted to the RMS values of the ABR
Waves. σ marks the amplitude of the background noise. The parameter σ is no fit
parameter but is measured under non-stimulus condition and kept constant to reduce
the number of variable parameters. The other two (blue dashed) horizontal lines mark
different threshold criteria (fraction criterion: σ+p ·a and the background noise dependent
criterion 2σ-criterion. The threshold is set to the value where the fitted function exceeds
the horizontal lines. b, c, Determined threshold as a function of the number of applied
measurement repetitions; the background noise criterion (b) and for the fraction criterion
(p-criterion) (c). The theoretical threshold for the p=5% criterion is set to 25 dB (artificial
data). The theoretical threshold of the 2σ-criterion is −∞, meaning that the function
diverges for lower measurement noise and a higher number of measurement repetitions.
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S2 Derivation of the correct fit function for RMS
values

As shown above the generalized logistic function with an additional term σ leads to
a direct dependency of the determined sensory threshold on the number of applied
measurement repetitions. In the following, we show how the noise contributes to
the measured stimulus response function in the case of an RMS value. We consider
the calculation of the RMS over time (tn) where Vtn are the measured values at the
point in time tn (cf. equ. S2.1, tM = 10ms).
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tn = (S2.5)√

f0(x)2 + σ2 (S2.6)

This values are a superposition of evoked response Ptn(x) (x: stimulus intensity)
and background noise Gtn (cf. equ. S2.2), f0(x) represents the RMS values of the
pure evoked response and σ the background noise. Squaring the sum generates a
mixed term (2Ptn(x)Gtn , cf. equ. S2.3) which can be considered to be very small
as the noise is assumed to be Gaussian distributed with a mean equal to 0. If the
mixed term is neglected, the responses as a function of the sound pressure level x
is of the form shown in equ. S2.6. This derivation is valid for the assumption that
there is no covariance between background noise and evoked responses.

3



Sensory Threshold Estimation Schilling et al.

S3 Derivation of the slope of the extended hard sig-
moid fit at the threshold

The fit function used to estimate the RMS values of neurophysiological data as a
function of stimulus intensity is the square root of the squared hard sigmoid function
and the squared background noise amplitude (cf. equ 2b). The hard sigmoid function
shows a clear knee used to define the threshold. However, the fit function itself has
no knee but is smoothed directly at the threshold value. For simplification of the
derivation the threshold t (knee of the base function) is set to zero.

f0(x) =

{
0 x < 0
s · x 0 ≤ x

(S3.1)

f(x) =
√
f0(x)2 + σ (S3.2)

x>0

lim
x→0

f ′(x, t = 0) =
d

dx

√
(s · x)2 + σ2 =

sx0√
(sx0)2 + σ2

= 0 (S3.3)

x<0

lim
x→0

f ′(x, t = 0) =
d

dx

√
02 + σ2 = 0 (S3.4)

The slope of the fit function calculated for x < 0 equals the slope of the fit function
for x > 0. Thus, the fit function is differentiable, although the underlying function
has a knee.
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S4 Effect of fitting the background noise level
In the main text we describe that the noise amplitude σ is not treated as fit param-
eter but as constant value measured under non-stimulus condition. This method-
ological principle is of special importance if no supporting points are measured near
the threshold (meaning low intensities). If σ is treated as fit parameter (cf. Suppl.
Fig. 2) missing supporting points cause unreliable fitting. The robustness of the
method can be quantified by the analysis of the determined threshold as a function
of the number of deleted supporting points (in analogy to Fig. 3). The deletion
of the supporting points leads to a drop in the determined threshold (cf. Suppl.
Fig. 2c) for variable noise amplitude (red curve) and stays constant for a fixed noise
amplitude (blue curve).
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Suppl. Fig. 2 | Stability of threshold estimate with fitted vs fixed background noise
level. a, Fit function of a generalized hard sigmoid function with different number of
supporting points with the background noise level as a free fitting parameter. b, Fit
function where the background noise level has been fixed. c, Dependence of the estimated
threshold value on the number of supporting points. The threshold for the fits with a fixed
background noise value (blue) are more stable than the fits with the background noise level
as a free parameter (red).
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S5 Effect of missing supporting points (real ABR
data)

As described in section (Effect of Removal of Supporting Points) fitting of the ex-
tended generalized logistic function becomes unreliable for a lack of measured sup-
porting points (cf. Fig. 3d for simulated data) in the saturation range, i.e. for stimuli
of high intensity. The analysis of ABR data (Suppl. Fig. 3) illustrates the effect
of missing supporting points. As the function is symmetric around the inflection
point, the curvature near the threshold depends on the curvature in the saturation
range. This results in a coupling of the estimated threshold with the function’s
shape in the saturation range. Thus, missing supporting points in the saturation
often overestimate the fit parameter a and, therefore, can influence the estimated
threshold, rendering the threshold estimation unstable (cf. Suppl. Fig. 3d,c).
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Suppl. Fig. 3 | Unreliable fitting for missing supporting points in the saturation
range. a, ABR waves (4 kHz, N=120 double trials, 40-120 dB SPL) measured in a Mon-
golian gerbil, b, Extended generalized logistic fit (in analogy to simulated data cf. Fig. 3d)
to the data (green curves: 100 subsamples N=100, blue curve: complete data set). The
shape of fit functions (green) highly depends on the used subsample and thus is an unreli-
able description of the data. Histogram of resulting thresholds; c The according threshold
estimates scatter over a range of ∼500 dB showing that the fit of the extended generalized
logistic function is not robust for missing supporting points in the saturation range
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