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Supplement 1. Weights calculation in the backpropagation

After the initial error value is calculated from the given random weight by the least squares method,
the weights are updated until the differential value becomes 0. The differential value 0 means there is
no change in weight when the gradient is subtracted from the previous weight. In Fig. 1, the w3 is
updated by following formula:
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The ErrorYou is the sum of error yo1 and error yo2. yii, Yo are constants that are known through the

given data. The partial derivative of ErrorY out with respect to w1 can be calculated by the chain rule
as follows.
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Here, (i) becomes yoi-yi1 which is the partial derivative of %(ytl - yo1)? with respect to yo1. When

— d‘c’if‘é o(x)-(1-5(x)) which makes (ii) Yo1-(1-yo1). Since Nets is W31yn1

+ wa1yn2 + bias, the partial derivative of Net; with respect to w31, which (iii), iS yh1.

activation function o(X) is

w31 (t+ 1) = wait — (Vo1 — Ye1)Yo1(1 — Y61)Yn1
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To update W11 in hidden layer, it is also started from ErrorYou, since Y is located in the hidden layer
and is not exposed.
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Here, the calculation of (i) is a bit different from previous. Since ErrorYou includes Erroryo1 and
Errorys, it is calculated as follows.
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(a), (b) is calculated as follows by the chain rule.
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Now, (i), (ii), and (iii) are summarized as follows.
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Supplement 2. Advanced gradient descent methods
Nesterov Momentum is the method of adding the value of yv.;) to the Momentum SGD to find the

gradient. This allows to reduce unnecessary movements by advance movement in the direction to

move.
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Adagrad(Adaptive Gradient) is an optimization method that adjusts the learning rate according to the

number of update of variables.
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Here, RMSprop is the method of adjusting the ratio between the previous value and the modified value.
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Adam, the most popular optimization method for deep learning today, takes advantage of momentum
SGD and RMSprop. Adam is expressed as follows. Where G is the sum of the square of the modified

gradient. € is a very small constant that prevents it from being divided by zero.
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Supplement 3.
Table S1. All the results of the 16 studies to systematically be reviewed
Author Modality Data Classifier AD c¢MCI ncMClI NC Total Acc. STD Acc. STD
(year) processing, AD/NC MCI
training conversion
Suk et al. MRLPET,CSF  SAE +sparse  SVM 51 43 56 52 202 98.8 0.4 83.3 2.1
(2015) learning
Choi and PET 3D CNN softmax 139 79 92 182 492 96 84.2
Jin (2018)
Suk and MRLPET,CSF  SAE SVM 51 43 56 52 202 95.9 1.1 75.8 2
Shen
(2013)
Suk et al. MRLPET DBM SVM 93 76 128 101 398 9535 523 7592 15.37
(2014)
Li et al. MRI PET 3D CNN Logistic 198 167 236 229 830 92.87 2.07 7244 241
(2014) regression
Suk et al. MRI SAE +sparse  SVM 51 43 56 52 202 92.4 1.5 69.3 2
(2015) learning
Suk et al. MRI DBM SVM 93 76 128 101 398 92.38 5.32 7242 13.09
(2014)
Suk et al. PET DBM SVM 93 76 128 101 398 92.2 6.7 7025 13.23
(2014)
Li et al. MRI 3D CNN Logistic 198 167 236 229 830 91.92 1.88 71.68 253
(2014) regression
Aderghal MRI 2D CNN softmax 188 399 228 815 91.41
et al.
(2017)
Li et al. MRLPET,CSF  RBM +Drop SVM 51 43 56 52 202 91.4 1.8 57.4 3.6
(2015) out
Liu et al. MRLPET SAE with softmax 77 67 102 85 331 914 5.56
(2015) zero-masking
Liu et al. PET RNN softmax 93 146 100 339 91.2
(2018a)
Vu et al. MRI PET SAE + 3D softmax 145 172 317 91.14
(2017) CNN
Liu et al. MRI Landmark softmax 159 38 239 200 636 91.09 76.9
(2018b) detection +
3D CNN
Cheng and MRLPET 3D CNN + softmax 93 100 193 89.64
Liu (2017) 2D CNN
Suk et al. PET SAE +sparse SVM 51 43 56 52 202 88.7 2.7 68.9 3.8
(2015) learning
Li et al. PET 3D CNN Logistic 198 167 236 229 830 87.62 236 7029 245
(2014) regression
Liu et al. MRILPET SAE+NN softmax 65 67 102 77 311 87.76
(2014)
Cheng et MRI 3D CNN softmax 199 229 428 87.15
al. (2017)
Chengand PET 3D CNN + softmax 93 100 193 87.13
Liu (2017) 2D CNN
Cheng and MRI 3D CNN + softmax 93 100 193 85.47
Liu (2017) 2D CNN
Lu et al. MRLPET DNN + NN softmax 238 217 409 360 1224 84.6 1.5 82.93 7.25
(2018)
Lu et al. PET DNN + NN softmax 238 217 409 360 1224 84.5 1.4 81.53 7.42
(2018)
Lu et al. MRI DNN + NN softmax 238 217 409 360 1224 81.9 1.2 75.44 7.74
(2018)
Korolevet MRI 3D CNN softmax 50 61 111 80 7
al. (2017)
Suk et al. CSF SAE + sparse  SVM 51 43 56 52 202 79.7 1.4 57.7 3
(2015) learning




All data on this table were from ADNI.
https://github.com/rasmusbergpalm/DeepLearnToolbox (Suk et al. (2015), Suk and Shen (2013))
https://github.com/neuro-ml/resnet cnn_mri_adni (Korolev et al. (2017))
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