demo_scenarios

August 1, 2019

1 odMLtables scenarios

This tutorial is an implementation of the scenarios described in Sprenger et al (in prep.) odMLtables:
A user-friendly approach for managing metadata of neurophysiological experiments The scenarios present
a simple, but realistic use case of o dML and odMLtables in an experimental lab and are a good start
to start using odML and odMLtables. Modification of this jupyter notebook is highly encuraged
and can serve as a starting point for your own metadata workflow. For a detailed description of
the individual scenarios, see Sprenger et al. (in prep).

To execute the steps of the tutorial, press Ctrl + Enter in the cell you want to execute.

1.0.1 Scenario 1: How to generate a metadata template without programming

This scenario describes how a template structure for daily data collection can be set up. The ex-
ample used here is the measurement of basic attributes of a mouse. The measures collected on a
single day can be listed in a table as shown below, where “YYYY-MM-DD’ specifies the measure-
ment date for score sheet values of a subject.

Section Measure Value Unit Type

/Subject/Scores_YYYY-MM-DD Experimenter Alice float
Weight g float
Date date
Comment string

This table can be generated using any spreadsheet software. Possible formats supported by
odMLtables are .xIs and .csv. A possible implementation using Microsoft Excel or LibreOffice Calc
can include color coding to aid visual inspection and might look like this

from 2019-08-01 16-53-10.bb

score_sheet_template.xls - LibreOffice Calc — (O

File Edit View Insert Format Skyles Sheet Data Tools Window Help *x

Arial o v aa@a a-8-5 » »
A _ B | c |p]| E F |

1 Section Property Value Unit Type

2 |/Subject/Scores_YYYY-MM-DD Comment string

3 Date date

- Experimenter Alice person

5 Weight g float

fi

g | sheetl

Screenshot

For simplicity, we generate a .csv file with the same content using Python here.
[]: # string representation of the score sheet in csv format
score_sheet_template = \
"""Section,Measure, Value,Unit, Type
/Subject/Scores_YYYY-MM-DD, Experimenter,Alice, ,person
,Weight,,qg, float
,Date,,,date
,Comment, ,,string
write the string representation to disk
with open('score_sheet_template.csv', 'w+') as f:
f . write(score_sheet_template)

This metadata template in .csv format can be converted to an odML file using odMLtables:
[]: import odmltables as odt

def csv_to_odml(csv_file):
"""Convert a score sheet from csv to odML format."""

initialize an OdmlTable object for handling metadata

table = odt.0dmlTable()

spectify experiment specific headers used in the score sheet csv filesy
< (Date, Measure, Unit and Type)

table.change_header(Path=1, PropertyName=2, Value=3, DataUnit=4,,
—odmlDatatype=5)

table.change_header_titles(Path='Section',PropertyName='Measure',
—~DataUnit='Unit', odmlDatatype='Type')

load from csv format and save in odML format
table.load from csv_table(csv_file)
table.write2odml (csv_file[:-4] + '.odml')

score_sheet_template.csv

convert the score sheet to odml format
csv_to_odml('score_sheet_template.csv')

The resulting odML file can be visualized in the browser using the odml . x1s style sheet. When
working locally on your computer, you can generate this visualization by opening the odML file
in your browser while having the style sheet located in the same folder.

[I: # This is utility code for displaying the odML file as html representation here.
You can also just open the odML file in your browser having the style sheety
—%n the same location as your odML file and
will get the same result
from IPython.display import display, HTML
import lxml.etree as ET

def display_odML_as_html(odML_file, xsl_file='odml.xsl'):
generate himl representation from odML file and style sheet
dom = ET.parse(odML_file)
xslt = ET.parse(xsl_file)
transform = ET.XSLT(xslt)
newdom = transform(dom)

display himl
display (HTML(ET. tostring(newdom, pretty_print=True).decode()))

display_odML_as_html('score_sheet_template.odml')

In the same manner as for the daily score sheet, we can also set up a table containing informa-
tion about the subject. Here, we are covering the ‘Species’, ‘Birthday’, a unique subject identifier
("'ulD’) and an alias name gives to the subject (“Alias’). Since this only needs to be filled once for
the subject we directly provide the available information for the current subject and don’t set up
an empty template structure.

Section = Measure Value Unit Type

/Subject Species = Mus musculus float
Birthday 1999-12-24 12:00:00 datetime
ulD asdf1234ghjk56789 date
Alias string

We convert this also into the odML format using the ‘csv_to_odml” function and visualize the
subject information using the ‘display_odML_as_html” function.

[I: # string representation of the score sheet in csv format
animal_info = \
"""Section,Measure, Value,Unit, Type
/Subject,Species,Mus musculus,,string
,Birthday,1999-12-24 12:00:00, ,datetime
,uID,asdf1234ghjkb56789, ,string
,Alzas,,,string

score_sheet_template.odml

[]:

[]:

nnn

write the string representation to disk
with open('animal_info.csv', 'w+') as f:
f.write(animal_info)

conversion to odML
csv_to_odml ('animal_info.csv')

visualization using html representation
display_odML_as_html('animal_info.odml"')

1.0.2 Scenario 2: Collecting daily observations in a common odML structure

The score sheet template structure defined in scenario 1 can now be copied for each measure-
ment day and filled. The filled files will then be converted to odML and incorporated in a single
odML file containing the complete metadata collected for an animal.
Here again we generate a filled metadata sheet in csv format using Python. In a real case this

step would be performed using any spreadsheet software.

string representation of the score sheet in csv format

score_sheet = \

"""Section,Measure, Value,Unzt, Type
/Subject/Scores_2000-01-01,Ezperimenter,Alice, ,person

,,Bob,,,

,Weight,5,g9, float

,Date,2000-01-01, ,date

,Comment, ,,string

write the string representation to disk

with open('score_sheet.csv', 'w+') as f:

f.write(score_sheet)

convert the score sheet to odml format
csv_to_odml ('score_sheet.csv')

Now, we have an odML file for the first recording day. To merge these with the information
about the subject, we use the merge functionality provided by odMLtables and extend the animal _
info.odml. Since the two odML files have disjoint metadata entries, we don’t need to specify the
overwrite_values parameter of the merge method here.

def merge_odml_files(filel, file2, overwrite_values=False):
"t Merge one odML file (file2) into another odML file (file1)"""
load first odML file
tablel = odt.0dmlTable(filel)

merge file2 into tablel
tablel.merge(odt.0dmlTable(file2), overwrite_values=overwrite_values)

overwrite filel with the merged score sheets
tablel.write2odml (filel)

animal_info.odml
animal_info.odml

[]:

[]:

merge the daily score sheet into the complete metadata collection
merge_odml_files('animal_info.odml',
'score_sheet.odml')

In the next step we aquire a second set of measurements, recorded on day 2. We directly
convert the generated csv file into the odML format.

string representation of the score sheet in csv format

score_sheet = \

"""Section,Measure, Value,Unit, Type

/Subject/Scores_2000-01-02, Experimenter,Bob, ,person

,Weight,5.5,q9,float

,Date,2000-01-02, ,date

,Comment,Small scratch at the right ear,,string

write the string representation to disk

with open('score_sheet.csv', 'w+') as f:
f.write(score_sheet)

convert the score sheet to odml format

csv_to_odml ('score_sheet.csv')

merge the daily score sheet into the complete metadata collection
merge_odml_files('animal_ info.odml',
'score_sheet.odml')

Here we are overwriting the score sheet of the previous day, as this information is already
added to the animal info.odml.

1.0.3 Scenario 3: Create a tabular representation of the odML for better viewing using the
color options

For visualization of the metadata we convert the odML file to the tabular representation in the
.x1s format. This has the advantage of color support within the tabular structure. All color
options can be customized using odMLtables.
def visualize_as_xls(odML_file):
" Generate an xls verston of an odML file for wvisualization purposes """
table = odt.0dmlX1lsTable(odML_file)
optional: change the color options in the output table
table.first_marked_style.fontcolor = 'dark_green'
table.second_marked_style.fontcolor = 'dark_teal'
table.highlight_defaults = True
write to zls format
table.write2file('.'.join(odML_file.split('.')[:-1]) + '.x1ls"')

visualize the complete metadata collection in the zls format
visualize_as_xls('animal_info.odml')

animal_info.odml
animal_info.xls

[]:

1.0.4 Scenario 4: How to filter a subset of an odML to edit it later on

For larger experiments the generated odML structure will grow in complexity. For easier visual-
ization and modification / update of data we will generate an odML file which contains only a
subset of the complete score sheet using the odML filter function.

: def extract_subset(odML_file):

"""Extract comments for the first day in this millenial."""”

table = odt.0dmlTable(odML_file)

extract properties, which have no value information
table.filter(Value=[])

generate separate file containing only subset of the information
table.write2odml ('animal info filtered.odml')

extract a subset of the information to a different file
extract_subset('animal_info.odml')

The next step could be to convert the filtered odML file into a csv file, update the necessary en-
tries and convert it back into the odML format to finally merge the change back into the complete
score sheet. For demonstration purposes here, we will modify the filtered odML file directly and
merge it into the complete score sheet.

1.0.5 Scenario 5: Merging the edited subset back into the original structure

thts code mimics a manual modification of an existing odML file, e.g. using,
—the csv representation generated with odMLtables

import odml

odmlfile = odml.fileio.load('animal_ info_filtered.odml', show_warnings=False)

odmlfile['Subject'].properties['Alias'].values = ['mouse_134"']

odmlfile['Subject'] ['Scores_2000-01-01"'] .properties['Comment'].values = ['Blood
—sample was taken and shows no abnormalities']

odml.fileio.save(odmlfile, 'animal info filtered.odml')

For merging the changes back into the complete score sheet we can use the same function as in
scenario 2. However, in case of editing already existing metadata entries, we need to overwrite
outdated entries in the original odML file.

merge the modified filtered odML into the complete metadata collection
merge_odml_files('animal_info.odml', 'animal_info_filtered.odml',
—overwrite values=True)

1.0.6 Scenario 6: Compare entries in the odML via data screening, lab book tables

For many odML files a number of metadata structure are repeating within the file. Here, all meta-
data sections for the daily measurement have the same structure. For visualization and docu-
mentation purposes in labbooks an overview across these related structures is usefull and can be
generated using the odMLtables compare function.

def generate_overview(odML_file, sections='all'):

"h-Compare entries with same structure across an odML file """

animal_info_filtered.odml
animal_info.odml
animal_info.odml

[]:

if sections=='all':
compare between all available score sheet sections
sections = [s.name for s in odml.fileio.load(odML_file,
—show_warnings=False) ['Subject'].sections]
table = odt.compare_section_xls_table.CompareSectionXlsTable()
table.load from file(odML _file)
specify all sections to be compared
table.choose_sections(*sections)
save to different odML file
table.write2file('.'.join(odML_file.split('.')[:-1]) + '_overview.xls')

compare all properties across the complete metadata collection
generate_overview('animal info.odml')

This generates an x1s overview table comparing the first value entries for all selected sections.

1.0.7 Scenario 7: Automatized processing of metadata collections

The workflow presented in scenario 1 to 6 can be to some extend automatized using odMLta-
bles. This simplifies the generation of an comprehensive metadata collection for the experimenter
and makes the workflow more robust against human errors.

Here we start from a collection of daily csv sheets and generate a complete metadata collection
as well as overview sheets from these.

In the first step we generation a number of score sheets containing dummy data to demonstrate
the metadata workflow building on top of these files.

generate a number of score sheets for demonstration of workflow
import os
import numpy.random as random

def generate_dummy_score_sheets(folder):
" Generate 20 daily score sheets with random wvalues entered”""
make sure folder exzists
if not os.path.exists(folder):
os.mkdir (folder)

generate score sheets and save them into the folder
for i in range(20):
score_sheet = \
"""Section,Measure,Value,Unzt, Type
/Subject/Scores_2000-01-{0:02d},Weight,{1:.1f}, g, float
;Experimenter, {2}, ,string
,Date,2000-01-{0:02d}, ,date
, Comment, {3}, ,string
men format(i+l, random.uniform(low=4.0, high=6.5), random.
—~choice(['Alice','Bob']),
random.choice(['"', 'Blood sample shows no abnormalities', 'Blood,
—sample shows infection'], p=[0.85,0.1,0.05]))

animal_info_overview.xls

with open(folder + '/score_sheet_day{}.csv'.format(i), 'w+') as f:
f.write(score_sheet)

def generate_animal_info(folder):
string representation of the score sheet in csv format
animal info = \
""Section,Measure, Value,Unzt, Type
/Subject,Species,Mus musculus,,string
,Birthday, 1999-12-24 12:00:00, ,datetime
,uID,asdf12349ghjk56789, ,string
,Alias,,,string
write the string representation to disk
with open(folder + '/animal_info.csv', 'w+') as f:
f.write(animal_info)

generate multiple daily score sheets for demonstation purposes
generate_dummy_score_sheets('./complete_workflow')
generate_animal_info('./complete_workflow')

In the second step we define the complete workflow for metadata collection, merge, storage
and visualizations in a single function and run this on the dummy data generated before. An
example of one of the dummy data sets is available here.

[]: # metadata workflow based on previously generated collection of csv files

import glob

def process_all_metadata(folder):

" Fend datily score sheets, merge them into complete metadata collectiong
—and generate visualizations. """

extract all metadata files present in this folder
source_files = sorted(glob.glob(folder + '/*.csv'))
if not source_files:

return None

convert all source files
for source_file in source_files:
csv_to_odml (source_file)
merge score sheets into animal info document
for score_sheet in sorted(glob.glob(folder + '/score_sheetx*.odml')):
merge_odml_files(folder + '/animal_info.odml', score_sheet,
—overwrite_values=True)

create visualization and comparison tables
visualize as_xls(folder + '/animal info.odml')
generate_overview(folder + '/animal_info.odml')

run complete metadata workflow from score sheet detection to visualizationy
—generation

./complete_workflow/score_sheet_day0.csv

process_all_metadata('./complete_workflow')

copy style sheet for visualization in browser
os.popen('cp odml.xsl ./complete_workflow/odml.xsl')

This generates in addition to the dummy score sheet in the subfolder complete_workflow a
complete metadata collection in a single odML file as well as two x1s files for visualization of
the odML structure and an overview across all common properties within the complete metadata
collection.

./complete_workflow/animal_info.odml
./complete_workflow/animal_info.xls
./complete_workflow/animal_info_overview.xls

	odMLtables scenarios
	Scenario 1: How to generate a metadata template without programming
	Scenario 2: Collecting daily observations in a common odML structure
	Scenario 3: Create a tabular representation of the odML for better viewing using the color options
	Scenario 4: How to filter a subset of an odML to edit it later on
	Scenario 5: Merging the edited subset back into the original structure
	Scenario 6: Compare entries in the odML via data screening, lab book tables
	Scenario 7: Automatized processing of metadata collections

