

Supplementary Material

1 Supplementary Data

Dockerfile

FROM ubuntu:16.04

RUN apt-get update && apt-get install -y \

 wget dos2unix \

 python3 \

 python3-pip \

 python3-setuptools \

 python3-dev \

 cmake unzip

RUN pip3 install networkx

RUN pip3 install pandas

RUN pip3 install pyfastaq

##Download CCGBpipe

WORKDIR /opt

RUN git clone https://github.com/jade-nhri/CCBGpipe.git

WORKDIR /opt/CCBGpipe/CCBGpipe

RUN chmod +x *.py

#albacore 2.1.7

#This software requires the user to download manually!!!

#samtools 1.7

ADD https://github.com/samtools/samtools/releases/download/1.7/samtools-1.7.tar.bz2 /opt

RUN apt-get update && apt-get install -y \

 libncurses-dev \

 apt-file \

 liblzma-dev \

 libz-dev \

 libbz2-dev \

 vim parallel

WORKDIR /opt

RUN tar -xjf /opt/samtools-1.7.tar.bz2

WORKDIR /opt/samtools-1.7

RUN make && make install

WORKDIR /

#bwa BWA-0.7.17

RUN apt-get install -y git

WORKDIR /opt

 Supplementary Material

 2

RUN git clone https://github.com/lh3/bwa.git

WORKDIR /opt/bwa

RUN make

WORKDIR /

#nanopolish v0.9.0

RUN apt-get update && apt-get install -y python-pip python-dev python-biopython build-essential

python-matplotlib

WORKDIR /opt

RUN git clone --recursive https://github.com/jts/nanopolish.git

WORKDIR /opt/nanopolish

RUN git checkout v0.9.0

RUN make

WORKDIR /

#canu v1.6

WORKDIR /opt

RUN wget https://github.com/marbl/canu/archive/v1.6.tar.gz

RUN gunzip -dc v1.6.tar.gz | tar -xf -

WORKDIR /opt/canu-1.6/src

RUN make -j 16

WORKDIR /

#MUMmer 3.23

WORKDIR /opt

RUN wget https://sourceforge.net/projects/mummer/files/mummer/3.23/MUMmer3.23.tar.gz

RUN tar -zxvf MUMmer3.23.tar.gz

WORKDIR /opt/MUMmer3.23

RUN make

RUN make install

WORKDIR /

#Minimap2, miniasm-0.2

WORKDIR /opt

RUN curl -L https://github.com/lh3/minimap2/releases/download/v2.10/minimap2-2.10_x64-

linux.tar.bz2 | tar -jxvf -

RUN wget https://github.com/lh3/miniasm/archive/v0.2.tar.gz \

 && tar -xzf v0.2.tar.gz \

 && (cd /opt/miniasm-0.2 && make) \

 && rm v0.2.tar.gz

WORKDIR /

#Racon1.1.1

WORKDIR /opt

RUN wget https://github.com/isovic/racon/releases/download/1.1.1/racon-v1.1.1.tar.gz \

 && tar -xzf racon-v1.1.1.tar.gz \

 && (cd /opt/racon-v1.1.1 && cmake -DCMAKE_BUILD_TYPE=Release && make) \

3

 && rm racon-v1.1.1.tar.gz

WORKDIR /

#Graphmap v0.3.0

WORKDIR /opt

RUN git clone https://github.com/isovic/graphmap.git

WORKDIR /opt/graphmap

RUN make modules && make

WORKDIR /

#set path

ENV PATH $PATH:/opt:/opt/CCBGpipe/CCBGpipe:/opt/samtools-

1.7/bin:/opt/bwa:/opt/nanopolish:/opt/canu-1.6/Linux-amd64/bin:/opt/MUMmer3.23:/opt/minimap2-

2.10_x64-linux/:/opt/miniasm-0.2:/opt/racon-v1.1.1/bin:/opt/graphmap/bin/Linux-x64

 Supplementary Material

 4

Usage of CCBGpipe

A folder named “raw_reads”: contains the flowing folders

Since the file size of raw reads for a MinION single flow cell are too large, we provide raw reads of a

single barcode for testing.

https://drive.google.com/uc?export=download&confirm=TxIT&id=1e-

xYLDEEzi8UqRf30KVTymmHNxr_te7P

wget --load-cookies /tmp/cookies.txt

"https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies

/tmp/cookies.txt --keep-session-cookies --no-check-certificate

'https://docs.google.com/uc?export=download&id=1e-xYLDEEzi8UqRf30KVTymmHNxr_te7P' -O-

| sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1e-xYLDEEzi8UqRf30KVTymmHNxr_te7P" -

O barcode01.tar.gz && rm -rf /tmp/cookies.txt

To extract fastq and fast5 files using extract.py:

extract.py raw_reads albacore2.1.7 -flowcell FLO-MIN107 -kit SQK-LSK108 -t 100

You will get a folder named albacore2.1.7, and it contains a fast5 folder.

Inside the fast5 folder, there are 12 barcode folders and 12 sequencing summary files:

https://drive.google.com/uc?export=download&confirm=TxIT&id=1e-xYLDEEzi8UqRf30KVTymmHNxr_te7P
https://drive.google.com/uc?export=download&confirm=TxIT&id=1e-xYLDEEzi8UqRf30KVTymmHNxr_te7P

5

Each barcode folder contains fast5 folders (4000 fast5 files included), FASTQ file (joinedreads.fasta)

and an assembly.fa (preassembled by minimap2 and miniasm with joinedreads.fastq).

Before running, to create a Run folder and enter it.

mkdir Run && cd Run

To get high-quality and long-length reads using runGetFastq.py:

 Supplementary Material

 6

runGetFastq.py ../albacore2.1.7/fast5/

You will get 12 barcode folders, each contains 40× long-length reads with quality higher than that in

the first quantile (readsA.fastq), 40× high-quality reads with length longer than that in the first

quantile (readsB.fastq) and the concatenated reads (A+B reads: reads.fastq). The distributions of read

quality and read length can be seen in Supplementary Figure 3, the 40× A reads and the 40× B reads

are shown in red and blue points, respectively.

To get miniasm assemblies using runmini.py

runmini.py

You will get 3 assemblies inside each barcode folder.

7

To run canu with the sampling strategy by using runAssembly.py:

runAssembly.py

As shown in the above process, with the runmini-assembled files, an estimated genome size is

obtained and used by runAssembly.py to utilize Canu v1.6 for the subsequent assembly. In this case,

Canu is used to assemble A+B reads (reads.fastq) to produce one assembly (Canu.). Then, Canu is

used to assemble 40× corrected reads sampled from the corrected A+B reads five times. Each

assembly produced by Canu (canu.contigs.fasta) is checked for circularity and the presence of zero

depth in misassemblies by using Nucmer and GraphMap, respectively, to prepare a file containing

circular and zero-depth-free contigs (cirseqN.fa). By comparing the file size of cirseqN.fa with that of

the assembly (assembly.fa) obtained from runmini.py, the number of successful assemblies (i.e.,

cirseqN.fa > 0.95*assembly.fa) is counted. In this case, the sampling strategy is performed for four

times (canu.1~canu.4).

 Supplementary Material

 8

As shown in the above process, all circular contigs produced by Canu are concatenated into a file

named allcir.fa: cat canu.*/cirseqN.fa > allcir.fa. All-vs-all alignment of allcir.fa is performed using

Nucmer to filter pair alignments between circular contigs with an alignment rate of ≥0.2, an aligned

length of ≥2500 bp, and an identity of >0.98. The pair alignments are used as connected components

in an undirected graph and then are analyzed using NetworkX (a Python package) to generate

connected components in groups. In this case, there are four groups, and the longest length among

each group is selected as a representative contig to form a representative assembly (canu.cir.fa). To

compare circular sequences in miniasm assembly (assembly_concir.fa) with canu.cir.fa,

representative contigs are produced (fpseq.fa): Addseq.py assembly_concir.fa canu.cir.fa fpseq.fa.

After running Assembly.py, you will get an assembly (fpseq.fa) ready for polishing.

ll barcode01/fpseq.fa

grep ‘>’ barcode01/fpseq.fa

9

To run racon and nanopolish for consensus sequence generation using runConsensus.py:

runConsensus.py ../albacore2.1.7/fast5/

You will get a polished assembly (conseqs.fasta).

ll barcode01/conseqs.fasta

grep ‘>’ barcode01/conseqs.fasta

To get circular genomes by using finalize.py:

finalize.py ../results

 Supplementary Material

 10

In the above process, the redundant ends of consensus sequences (conseqs.fasta) are trimmed and the

circular sequences are rearranged to begin at dnaA/repA or a position with the minimum value of the

GC skew.

You will get an output folder (results) which contains barcode folders. Each barcode folder has a

final assembly (startfixed.contigs.fa) along with its alignment files (long.bam*), reads.fastq and

fpseq.fa. Please note that the sequencing reads we submitted to the NCBI (SRA accessions in Table

1) were 80× A+B reads (reads.fastq) not the basecalled reads (joinedreads.fastq).

grep '>' startfixed.contigs.fa

The sequences can be manually examined with Tablet to confirm the uniformity and continuity of

sequencing coverage:

11

To get 40× long-length reads without considering quality (40× A* reads):

vi /opt/CCBGpipe/CCBGpipe/runGetFastq.py

amount=int(gsize)*40

comm='GetFastqA.py -i {0}.txt -q {0}/ -t {1} -o {2}/{0}/'.format(i,amount,cwd)

mkdir Run_40X_A && cd Run_40X_A

runGetFastq.py ../albacore2.1.7/fast5/

To get 40× high-quality reads without considering length (40× B* reads):

vi /opt/CCBGpipe/CCBGpipe/runGetFastq.py

amount=int(gsize)*40

comm='GetFastqB.py -i {0}.txt -q {0}/ -t {1} -o {2}/{0}/'.format(i,amount,cwd)

mkdir Run_40X_B && cd Run_40X_B

runGetFastq.py ../albacore2.1.7/fast5/

 Supplementary Material

 12

Comparison of assemblers

To compare long-read assemblers, we have conducted Canu (v1.7), Flye (2.3.3-g47cdd0b), HINGE,

and miniasm (0.2-r168-dirty) to assemble the sequencing reads (joinedreads.fastq) of 12 barcodes

produced by extract.py. Genome size and number of contigs produced by these assemblers are listed

below:

 Canu1.7 Flye HINGE* Miniasm

Barcode01 4,052,016 (4) 4,100,783 (4) 7,886,155 (4) 4,000,072 (4)

Barcode02 4,335,522 (5) 4,376,632 (4) 8,434,591 (6) 4,280,305 (5)

Barcode03 4,169,271 (1) 4,255,666 (1) 8,332,632 (2) 4,135,056 (1)

Barcode04 4,178,606 (5) 4,170,853 (5) 7,785,453 (2) 4,051,959 (5)

Barcode05 3,890,082 (6) 3,964,936 (3) 7,769,065 (8) 3,857,283 (5)

Barcode06 4,284,616 (4) 4,349,745 (4) 8,367,626 (6) 4,236,313 (4)

Barcode07 4,603,999 (12) 4,555,369 (6) 8,682,983 (12) 4,437,000 (7)

Barcode08 4,313,070 (9) 4,386,356 (6) 8,298,512 (6) 4,339,396 (9)

Barcode09 2,923,777 (3) 2,963,344 (2) 5,841,113 (4) 2,901,692 (3)

Barcode10 2,951,690 (6) 2,946,201 (3) 5,798,100 (4) 2,892,865 (3)

Barcode11 2,895,086 (3) 2,961,146 (2) 5,814,014 (4) 2,895,471 (4)

Barcode12 3,046,048 (7) 3,022,955 (3) 5,889,033 (4) 2,910,091 (2)

*Please note that HINGE output sequences and their reverse complement sequences as well. Therefore,

the corresponding genome size and the number of contigs are half the values listed in the above table.

Although Canu outputs “suggestCircular=yes” in the header line for circular sequences, we examined

circularity ourselves.

grep '>' barcode01/canu/canu.contigs.fasta

CheckCirN.py barcode01/canu/canu.contigs.fasta

Please note that contigs in an assembly produced by Canu are sometimes redundant, we take barcode10

as an example:

grep '>' barcode10/canu/canu.contigs.fasta

We have confirmed that two contigs (tig00000023 and tig00000012) are circular (tig00000023 is

chromosome and tig00000012 is the small plasmid with length of 3 Kbp), and two contigs

(tig00001008 and tig00001011) should be discarded because they are orphan sequences (reads=1) and

we have confirmed that they are partial sequences of 27-Kbp plasmid and chromosome respectively

(as shown in the following figure).

13

The sequence of tig00001009 is likely to be the missing plasmid of length 27 Kbp, but is partial.

However, the sequence of tig00001010 is redundant and it is part of chromosomal sequence

(tig00000023):

In Flye output, there is a file named assembly_info.txt. We take barcode01 and barcode10 as examples:

seq_name length cov. circ. repeat mult. graph_path

contig_1 3936731 79 + - 1 1

contig_2 74243 43 + - 1 2

contig_3 81619 55 - - 1 *,3,*

contig_4 8190 22 + + 1 4

This file suggests that Flye produce 4 contigs for barcode01, and three are circular sequences. Contig_1,

contig_2 and contig_4 represent one chromosome, one large plasmid and one small plasmid. However,

contig_3 is the partial sequence of the plasmid with length of 91 Kbp.

seq_name length cov. circ. repeat mult. graph_path

contig_1 2924831 218 + - 1 1

contig_2 20184 159 - + 1 2

contig_3 1186 11 - + 1 3

This file suggests that Flye produce 3 contigs for barcode10, and only one contig (chromosome) is a

circular sequence. Contig_2 and contig_3 represent partial sequences of the two plasmids.

Please note that miniasm outputs an assembly graph containing unitigs with “c” and “l” suffixes to

represent circular and linear sequences, respectively. We take barcode01, barcode03 and barcode10 as

examples:

grep '>' barcode01/assembly.fa

This information suggests that miniasm produce 4 circular sequences for barcode01.

grep '>' barcode03/assembly.fa

This information suggests that miniasm produce 1 liner sequence for barcode03.

grep '>' barcode10/assembly.fa

This information suggests that miniasm produce 1 linear and 2 circular sequences for barcode10.

To reduce the complexity of comparisons, we show schematic relationships between assemblies and

final release assemblies for barcode01 and barcode10, as below:

 Supplementary Material

 14

15

Besides, runtime of these assemblers is shown below:

 Canu1.7 Flye HINGE Miniasm

Barcode01 1 h 2 m 39 s 34 m 25 s 33 m 4 s 1 m 38 s

Barcode02 2 h 53 m 17 s 1 h 1 m 7 s 1 h 22 m 55 s 3 m 34 s

Barcode03 1 h 30 m 19 s 1 h 3 m 11 s 1 h 2 m 15 s 2 m 58 s

Barcode04 1 h 50 m 21 s 53 m 25 s 52 m 51 s 1 m 33 s

Barcode05 1 h 20 m 23 s 48 m 53 s 53 m 18 s 2 m 40 s

Barcode06 3 h 22 m 1 s 1 h 9 m 31 s 1 h 39 m 58 s 4 m 17 s

Barcode07 1 h 13 m 30 s 34 m 53 s 31 m 11 s 1 m 40 s

Barcode08 1 h 30 m 3 s 38 m 57 s 40 m 7 s 2 m 4 s

Barcode09 1 h 15 m 2 s 1 h 27 m 39 s 2 h 24 m 57 s 5 m 37 s

Barcode10 1 h 12 m 57 s 1 h 12 m 58 s 1 h 59 m 21 s 5 m 24 s

Barcode11 1 h 12 m 17 s 59 m 22 s 1 h 38 m 35 s 4 m 36 s

Barcode12 1 h 5 m 3 s 45 m 25 s 1 h 1 m 31 s 3 m 18 s

Canu1.7 command:

canu -p canu -d canu. genomeSize=gsize corOutCoverage=1000 -nanopore-raw reads.fastq

gnuplotTested=true

Please note that gsize was estimated based on the file size of Miniasm’s assembly

Flye command:

flye --nano-raw joinedreads.fastq --out-dir Flye_out --genome-size gsize --threads 32

Please note that gsize was estimated based on the file size of Miniasm’s assembly

HINGE command:

mkdir hingerun

cd hingerun

mv ../joinedreads.fastq ./

seqtk seq -a joinedreads.fastq > reads.fasta

hinge correct-head reads.fasta reads.np.fasta map.txt

fasta2DB barcode reads.np.fasta

DBsplit barcode

HPC.daligner -t32 barcode | bash -v

LAmerge barcode.las barcode.[0-9].las

DASqv -c100 barcode barcode.las

hinge filter --db barcode --las barcode --mlas -x barcode --config /opt/HINGE/utils/nominal.ini

hinge maximal --db barcode --las barcode --mlas -x barcode --config /opt/HINGE/utils/nominal.ini

hinge layout --db barcode --las barcode -x barcode --config /opt/HINGE/utils/nominal.ini -o barcode

hinge clip-nanopore barcode.edges.hinges barcode.hinge.list myRun

hinge draft-path ./ barcode barcodemyRun.G2.graphml

hinge draft --db barcode --las barcode.las --prefix barcode --config /opt/HINGE/utils/nominal.ini --

out barcode.draft

hinge correct-head barcode.draft.fasta barcode.draft.np.fasta draft_map.txt

fasta2DB draft barcode.draft.np.fasta

HPC.daligner -t32 barcode draft | bash -v

hinge consensus draft barcode draft.barcode.las barcode.consensus.fasta

/opt/HINGE/utils/nominal.ini

 Supplementary Material

 16

hinge gfa ./ barcode barcode.consensus.fasta

cd ..

Miniasm command:

minimap2 -x ava-ont -t50 joinedreads.fastq joinedreads.fastq > mapreads.paf

miniasm -f joinedreads.fastq mapreads.paf > assembly.gfa

getfa.py assembly.gfa

rm mapreads.paf assembly.gfa

17

Applying CCBGpipe to assemble Klebsiella pneumoniae

To validate the completeness of assemblies produced by CCBGpipe, we have run CCBGpipe for 7

samples (their depth of coverage of ONT reads >80×). Please note that the reason why we did not use

all the 12 samples is that the depth for the other five samples is quite low (<50×). Because Wick et al

have subsampled the Nanopore sequencing down to 500 Mbp high quality reads, and they did not

provide the raw fast5 file, we decided to use the high-quality reads. These subsampled ONT reads

were downloaded from https://figshare.com/articles/Subsampled_ONT_reads/5171491.

prepare_kp.py

You will get an output folder (/Run/5171491_kp) to contain the seven sequencing reads:

cd /Run/5171491_kp

runmini.py

https://figshare.com/articles/Subsampled_ONT_reads/5171491

 Supplementary Material

 18

After running runmini.py, you will get miniasm assemblies (assembly.fa). Miniasm outputs an

assembly graph containing unitigs with “c” and “l” suffixes to represent circular and linear

sequences, respectively. The number circular contigs can be obtained accordingly.

runAssembly.py

After running runAssembly.py, you will get assemblies ready for polishing (fpseq.fa) for each barcode.

Nanopolish requires fast5 for sequence consensus, but that were not provided from the website. We

therefore did not perform sequence consensus. To compare the numbers of circular contigs

(assembly.fa and fpseq.fa) with that obtained from https://github.com/rrwick/Bacterial-genome-

assemblies-with-multiplex-MinION-sequencing/blob/master/results.xlsx:

 Canu* Unicycler* Miniasm Uni-hybrid* CCBGpipe Complete*

Barcode01 2 3 3 3 3 3

Barcode02 2 3 3 3 3 3

Barcode06 2 3 3 6 5 7

Barcode07 3 3 3 3 3 3

Barcode08 0 0 1 1 1 1

Barcode10 2 7 5 6 7 8

Barcode12 5 7 9 11 11 11

Fraction
16/36

(44.4%)

26/36

(72.2%)

27/36

(75%)

33/36

(91.7%)

33/36

(91.7%)

36/36

(100%)

* The number of circular contigs for Canu, Unicycler, Uni-hybrid and Complete are excerpted from

the results (https://github.com/rrwick/Bacterial-genome-assemblies-with-multiplex-MinION-

sequencing/blob/master/results.xlsx). Canu: Canu long-read-only assemblies; Unicycler: Unicycler

long-read-only assemblies; Uni-hybrid: Unicycler hybrid assemblies; Complete: Manually completed

assemblies.

https://github.com/rrwick/Bacterial-genome-assemblies-with-multiplex-MinION-sequencing/blob/master/results.xlsx
https://github.com/rrwick/Bacterial-genome-assemblies-with-multiplex-MinION-sequencing/blob/master/results.xlsx
https://github.com/rrwick/Bacterial-genome-assemblies-with-multiplex-MinION-sequencing/blob/master/results.xlsx
https://github.com/rrwick/Bacterial-genome-assemblies-with-multiplex-MinION-sequencing/blob/master/results.xlsx

19

VGC1 (3 circular sequences) M013 (2 circular sequences)

Applying CCBGpipe to assemble Staphylococcus aureus

We have two S. aureus strains (M013 and VGC1). Each of them has been sequenced with both Illumina

and Oxford Nanopore technologies. We therefore used Unicycler to hybrid assemble Illumina reads

with MinION long reads and took the assemblies as reference genomes.

unicycler -1 R1.fastq -2 R2.fastq -l joinedreads.fastq -o reference

unicycler -l joinedreads.fastq -o unicycler

We then performed quality assessment using Quast (http://quast.bioinf.spbau.ru/):

As shown in the above results, our pipeline (CCBGpipe) produce complete (5 circular sequences) and

accurate (>99.8%) assemblies in comparision to the long-read-only Unicycler assemblies (4 circular

sequences) with accurace of 99.7%. By comparing the MinION reads (reads in joinedreads.fastq) to

the reference genome assembled by hybrid unicycler using blastn, approximately 90% sequence

identity is obtained, which suggests that the accuracy of raw MinION reads is around 90%. In running

CCBGpipe, representative contigs (fpseq.fa) assembled by Canu are produced. The Canu-assembled

assemblies have accuracy of 99.5%.

http://quast.bioinf.spbau.ru/

 Supplementary Material

 20

So, to summarize the accuracies for reads, long-read-only Unicycler assemblies, Canu assemblies and

CCBGpipe assemblies are listed:

Sequence raw MinION reads Unicycler Canu CCBGpipe

File name joinedreads.fastq assembly.fasta fpseq.fa startfixed.contigs.fa

Accuracy (%) 90 99.7 99.5 99.87

21

Basecalling with Guppy

Oxford Nanopore Technologies released Guppy to replace Albacore in December 24, 2018. The fast5

file format has been changed from “one fast5 file per read” to “multi-read fast5” file format. Guppy

can handle multi-read fast5 files.

guppy_basecaller -i Fast5 -s guppy_out

After running guppy_basecaller, you will get an output folder (e.g., guppy_out) to contain

fastq_runid_*.fastq, guppy_basecaller_log-*.log and a file named sequencing_summary.txt.

guppy_barcoder -i guppy_out -s barcoding

After running guppy_barcorder, you will get the barcode folders and a file named

barcoding_summary.txt:

 Supplementary Material

 22

Before running runGetFastq.py, you need to get barcode files and barcode folders using preprocess.py:

preprocess.py -b barcoding/barcoding_summay.txt -s guppy_out/sequencing_summary.txt -o outdir

You will get barcode folders and index files for each barcode. Each barcode folder contains a fastq file

(joinedreads.fastq), a miniasm-assembled assembly (assembly.fa) and a tsv file for filter_reads.

23

cd outdir/barcode01 && ll

With the above information, you can perform CCBGpipe by beginning with runGetFastq.py.

cd ../../

With the file listing read_id in readid.tsv, one can extract fast5 files using filter_reads

(https://github.com/nanoporetech/fast5_research):

https://github.com/nanoporetech/fast5_research

 Supplementary Material

 24

filter_reads --recursive --multi --workers 32 Fast5/ fast5/barcode01

outdir/barcode01/barcode01_readid.tsv

cd fast5/barcode01 && ll

2 Supplementary Figures

25

Supplementary Figure 1. Number of circular contigs produced by miniasm. Forty-fold sampling

reads from three read sets (all reads, A*+B*, and A+B) were separately produced and assembled by

miniasm ten times (y-axis) to see whether the 48 circular sequences (x-axis) were produced. A* and

B* reads are the 40× reads ordered by length and quality, respectively, without considering the

minimal quality and length, whereas A+B reads are the 40× long-length reads with quality higher

than that in the first quantile plus the remaining 40× high-quality reads with length longer than that in

the first quantile.

 Supplementary Material

 26

Supplementary Figure 2. Canu assemblies. Canu v1.6 (with parameters: corOutCoverage=1000 and

nanopore-raw) was used to assemble 40× long-length reads (A*), 40× high-quality reads (B*), 40×

long-length reads with quality higher than that in the first quantile (A), 40× high-quality reads with

length longer than that in the first quantile (B), and A+B reads. Canu v1.7 was used to assemble all

reads with default setting and to assemble A, B, and A+B reads with parameters:

corOutCoverage=1000 and nanopore-raw. Filled bars represent circular contigs that were assembled.

27

Supplementary Figure 3. Distributions of read quality (y-axis) and read length (x-axis, log2(read

length)) for 80× long-length reads, high-quality reads, and A+B reads. Each dot denotes a sequencing

read. The 80× long-length read set are the points right against the red dotted line, the 80× high-

quality read set are the points above the blue dotted line, and A+B reads are the 40× long-length A

reads with quality higher than that in the first quantile (red points) plus the remaining 40× high-

quality B reads with length higher than that in the first quantile (blue points).

