
Appendix I: qEEGT-VARETA 

For easier reference here follows a summary of the Variable Resolution Electromagnetic Tomography 

(VARETA) methodology in the frequency domain (Bosch-Bayard et al., 2001): 

Variable Resolution Electrical tomography with the MNI average brain. 

For analysis of the EEG background activity in clinical practice, we recommend the selection of EEG 

epochs between 2- and 2.56-seconds of length, after artifact rejection and guaranteeing the signal to be 

quasi-stationary. Approximately 24 EEG epochs should be selected. This in accordance with the IFCN 

guidelines (Babiloni et al., 2019).  

In accordance with this let ( ),

raw Nd

i j t v denote the vector of raw EEG signal recorded at the scalp, for 

the Nd leads at time t. The sub index i=1…Ns, denotes subjects, j=1…Ne (typically 24) is the number of 

epochs, and t=1…Nt (typically 512) is the number of time instants in each epoch. 

The raw signal is transformed to the average reference: 
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Here 
Nd Nd Nd−= I 1H  is the centering matrix (Mardia, Kent, & Bibby, 1997, pp. 270). 

To enable a tomographic analysis which describes the spectral sources at the different frequencies 

without the need of considering interactions, it is desirable to construct a description in which 

frequencies are independent. Under this assumption, transformation to the frequency domain by the 

Fast Fourier Transform (FFT) (yielding a complex Gaussian distribution) is equivalent to a Principal 

Components Analysis which, in the presence of a Gaussian distribution, provides components that are 

independent by definition. Of course, for more general distributions the vanishing of higher order 

moments is also required but in this case the limit theorem of Brillinger (Brillinger, 1974) guarantees the 

validity of our assumptions which have been further ensured checking with a multivariate box cox 

transformation (Biscay Lirio et al., 1989). 

( ),i j tv  is then transformed to the frequency domain by means of the FFT producing a set of complex 

vectors ( ),i j v , where 1...N =  denotes the frequency index. With the EEG sampling 

specifications given above, Nω=49 (number of frequencies), for a frequency span from 0.39 Hz to 19.11 

Hz with frequency bins of 0.39 Hz. This is the bandwidth presently used in the Cuban Normative 

database for the qEEGt (the VARETA Statistical Parametric Mapping). 

In the context of the assumptions specified above, the central limit theorem (Brillinger, 1974) 

guarantees that 𝑽𝑖𝑗(𝜔) is distributed as a Complex Multivariate Gaussian vector which is independent 

from all vectors at all other frequencies. This vector has zero mean and is used to calculate a complex 

hermitian covariance matrix Σ (𝜔)𝑖  which is estimated by: 
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where * denotes the conjugate transpose of a vector and the u superscript stands for 

“uncorrected”. 

The correction by the Global Scale Factor (GSF) (Hernández et al., 1994) is achieved by the following 

expression: 
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(Hernández et al., 1994; Valdés et al., 1992) have shown that EEGs differ greatly by a random scale 

factor that affects equally all channels, which is subject and recording specific. Hernandez et al showed 

that EEGs differ greatly by a random scale factor that affects equally all channels. This is named the 

Global Scale factor. This has been shown to useful also to compensate for slight differences in amplifier 

systems since the norms are all Cuban. This correction consists of a subtracting from the log spectra of 

each electrode and frequency the overall average: 
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where ( )lm

iS   is the (l, m) component of the cross spectral matrix for subject i; exp is the exponential 

function and log is the natural logarithm. ( )dd

iS   is the power spectrum at frequency 𝝎. This has been 

shown to be useful also to compensate for slight differences in amplifier systems since the norms are all 

from Cuba. 

Frequency domain VARETA can be specified as the estimation of j  from the following forward problem 

(Bosch-Bayard et al., 2001): 
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where ( )ir v  denotes the true data and ( )ir e  refers to error contributions from influences such as 

impedance fluctuations on the sensor array. ( )ir j  is the matrix of the (X, Y, Z) components of the 

primary current field discretized on a grid inside the gray matter of the brain (3244 grid points in the 

current implementation). The operator K is the lead field matrix that relates the current densities with 

the observed EEG voltage, which is obtained by spatial discretization (Riera, Aubert, Valdés, Casanova, & 

Lins, 1996). The Lead field has also been transformed to the average reference, according to Pascual-

Marqui (2007). In this version of VARETA, the grid is defined over the MRI Atlas of the Montreal 

Neurological Institute (MNI) (Evans et al., 1993). 

The VARETA inverse solution (Valdes-Sosa, Garcia, & Casanova, 1996) for this problem is obtained by 

minimizing the following objective function:  
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This is a hierarchical generalization of the usual Bayesian formulation for inverse problems (Tarantola, 

1987). It should be noted that to minimize the expression (6) ( )ir j  must be the outcome of a trade-

off between several factors: 
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expresses the usual goodness of fit between the data and the model. 𝛴𝑬𝑖
 is the noise 

covariance matrix.  
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  imposes the mask upon the solution, which defines 

those voxels in which sources of the EEG are to be permitted. These assumptions are 

contained in the source covariance matrices ( )
iS 

J
. 

3. The rest of the terms result from placing a natural conjugate prior on ( )
Ji
  (Mardia 

et al., 1997, pp 109-111) in which the a priori covariance matrix is proportional to 𝑮.  

Matrix 𝑮 incorporates several assumptions about the sources which defines the regularization 

parameter:  

a. the spatial smoothness is determined by 𝑳3, which is the Kronecker product of 𝑳 with the Identity 

matrix I3. 𝑳 is any scalar roughness operator such as the Laplacian or thin plate spline operator. In this 

paper, the Laplacian operator is adopted as in (R D Pascual-Marqui, Michel, & Lehmann, 1994) and 

(Riera et al., 1996), in which it is introduced for the first time a numerical approach for calculating the 

EEG inverse solutions at the cortical surface.  

b. 𝛬𝑠 is a diagonal matrix which specifies the amount of smoothness at every source in the gray matter. 

This is an important difference with LORETA, which considers that the spatial smoothness in all 

sources is the same. This parameter is known as the regularization parameter. 



c. Matrix 𝛬𝑔 is a diagonal matrix that defines the a priori probability for each source to produce current. 

Large values of smoothing force constant solutions. Zero values specify no smoothing, i.e., point-

solutions. 

d. 𝛬𝑚 is a diagonal matrix that defines the a priori probability obtained from the mask, that there might 

be any primary current density at a given location. 

In this work 
1

2.
m G
= W , where W is the weights matrix. It is a diagonal weights matrix, introduced 

by (George et al., 1995) to attenuate the high bias of the inverse solutions to the superficial sources. 

The diagonal matrix 𝛬𝐺 contains an estimate of the probability that there may be cortical gray matter 

for each point in the solution grid. These probabilities are available from the MNI probabilistic tissue 

maps from the MNI. 

In its more general form, the estimation of VARETA is performed by the Expectation-Maximization (EM) 

algorithm (Dempster, Laird, & Rubin, 1977) in which 𝜏𝑖(𝜔) is estimated by minimizing the Generalized 

Cross-validation Criterion (GCV) (Casanova et al., 2000). The EM-algorithm usually converges only to 

local minima and, in the general case slows down near the optimal point. However, after extensive 

examination of the dataset acceptable starting points for any EEG were found, including a restricted 

range of regularization parameters. Essentially, an estimate of the source spectra is obtained for each 

voxel and frequency by interpolation from the neighboring voxels and compared with the values 

allocated to that voxel. This nonlinear estimation procedure may achieve super resolution and eliminate 

"ghost solutions" that are artifacts of simple linear inverse solutions. 

From the previous section, an estimate of the currents at the sources ( )
iJ   for each frequency can be 

obtained. Topographic methods in the frequency domain are based upon estimates of the source cross-

spectral matrices ( )
iJS  . An algorithm simplification was introduced to allow the efficient estimation 

of this parameter. That simplification consists in substituting the data set 
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2(𝜔), which is the square root of its "ideal" symmetric cross spectral matrix at the EEG 

channels. 
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 is a diagonal matrix which contains the square root of the eigenvectors. ( )
iS  is the 

estimation of the cross spectral matrices at the sources is an iterative procedure, which is described as 

follows: 

Starting: The matrix Σ (𝜔)𝑖  is initialized with the value: 
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k-th iteration: The following terms are calculated: 
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The process is repeated until the estimates converge. 

An important point to emphasize is that in expressions (7) and (8) it is necessary to use the full cross-

spectral matrices of the data in order to obtain an estimate of the source cross-spectrum. It is therefore 

incorrect to attempt to fit sources by means of just using the power spectra of the EEG data. 

Simplifications to speed-up the calculations 

The procedure above described can be time consuming. To speed up the calculations, important 

simplifications are introduced: 

a) 𝛬𝐺 is simplified to a mask of 0s and 1s by thresholding the probability mask. In this work we use a 

threshold of 0.4, which is imposed to the probability mask of the MNI Atlas. A value of zero indicates 

not belonging to the gray matter and a value of 1 indicates the source as gray matter. 

b) 𝛬𝑠 is taken a priori equal to 𝛬𝐺  

c) the hyperparameter 𝜏𝑖(𝜔) is fixed a priori to a small value, calculated as the mean of the 

hyperparameters obtained with GCV from all 211 subjects of the normative database, with careful 

inspection of each solution. This simplification makes the inter subjects’ solutions comparable, 

allowing for further statistical comparisons. 

d) The estimation procedure is stopped after the first iteration. 

e) It is assumed that 𝛴𝑬𝑖
(𝜔) = 𝜎𝑬𝑖

2 (𝜔) ⋅ 𝑰, therefore 𝜆𝑖(𝜔) is taken as 𝜆𝑖(𝜔) =
𝜎𝑬𝑖

(𝜔)

𝜏𝑖(𝜔)
. 

After these simplifications, the estimation of the current is performed in just one step, by calculating the 

square root of the cross spectral matrices at the sources: 
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This formulation reduces the number of mathematical operations needed for the calculation of the cross 

spectral matrices at the sources and therefore it is useful as a practical approach to solve the problem. 

On the other hand, 𝜆𝑖(𝜔) can be easily obtained from any procedure inverse procedure, both for real as 

well as for complex data. 



From �̂�𝐽𝒊
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2 (𝜔) the cross spectral matrices at the sources can be obtained with the following equation: 
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where 𝑠𝑖;𝑟,𝑠(𝜔) is the cross spectral matrix at the sources for subject i at frequency , between sources r 

and s. �̂�𝐽𝒊

1

2 (𝜔)[𝑟] is the row of the cross spectral square root matrix which correspond to source r. 

Normative SPM with EEG source spectra 

In our case, for each subject VARETA is fitted for the 3244 (Ng) sources and 49 (Nω) frequencies, which 

produces 177,527 log-transformed spectral values at the sources 𝑠𝑖;𝑟,𝑟(𝜔). These values are considered 

as individual variations around an age dependent populational mean: 

log(𝑠𝑖;𝑟,𝑟(𝜔)) = 𝜇𝑟(𝜔, 𝑎𝑔𝑒) + 𝜀𝑟(𝜔) 

The population mean value for the log spectrum at voxel r 𝜇𝑟(𝜔, 𝑎𝑔𝑒) is a (usually nonlinear) function of 

age and the error term 𝜀𝑟(𝜔) is assumed to be Gaussian with standard deviation 𝜎𝑟(𝜔, 𝑎𝑔𝑒). In our 

qEEGT toolbox, these mean 𝜇𝑟(𝜔, 𝑎𝑔𝑒) values were obtained from the Cuban Human Brain Mapping 

Normative EEG database. This database covers an age range from 5 to 87 years old. The study was 

performed in a stratified manner, increasing the sample size in those ages where the age variation is 

known to be higher, i.e., from 5 to 25 years old. Polynomials heteroscedastic regression equations up to 

second order were calculated for each frequency and source (lead). The order of the polynomial in each 

case was obtained using AIC (Szava et al., 1994). 

The Z-transform for the source spectrum of any voxel (lead) is defined as: 

𝑍𝑖;𝑟,𝑟(𝜔) =
log(𝑠𝑖;𝑟,𝑟(𝜔))−𝜇𝑟(𝜔,𝑎𝑔𝑒)

𝜎𝑟(𝜔,𝑎𝑔𝑒)
 where 𝑍𝑖;𝑟,𝑟(𝜔) is the Z transform of the source log spectrum for 

individual i at voxel r. 

Moreover, the correction by the already mentioned Global Scale Factor (GSF) makes our qEEGT analysis 

compatible with many different recording systems. It has been shown that our normative database can 

be successfully used with recordings obtained from different systems, attenuating the differences 

between them due to calibration, amplifiers and other technical aspects. 

 

  



Appendix II: The qEEGt interface 

To be able to run the qEEGt plugin in CBRAIN, the user first needs an account to have access to the 

system. This step is accomplished at the CBRAIN portal (https://portal.cbrain.mcgill.ca), using the option 

“Request account”. Once having the credentials, the process to calculate the qEEGt is as follows: 

a) login into the CBRAIN portal  

b) creates a project (Figure 1). If the project is already created, then just select it. 

c) upload a dataset in an accepted format by the qEEGt, which can be done via the web-based 

interface or through a secured FTP server. Data should be compressed as a tar.gz file. 

Figure 1: CBRAIN main user interface at login. 

d) with the dataset selected, launch a new task (Figure 2). A window appears showing all 

available pipelines. 

e) Inside “Software Package” the QEEGt tool must be selected. The “qeeg” plugin will appear 

at the right side and it must also be selected. 

Figure 2: qEEGt task interface showing the data  

f) After selecting the “qeeg” plugin, two options appear, one for the user to select the server 

where to run the plugin (which is optional) and the second one is to specify the desired 

qEEGt parameters (“Prepare qeeg”). 

https://portal.cbrain.mcgill.ca/


g) The qEEG panel will appear immediately. Figure 3 shows the interface of the qEEGt-plugin in 

CBRAIN, with all the available user options. There are three input file formats currently 

available: one for the newly defined extension of the Brain Imaging Data Structure to 

handle EEG data (BIDS-EEG), one specific for the Neuronic PLG format created by the Cuban 

Neuroscience Center; and a third one for an ASCII file in a specific format, which is 

described in Appendix III. 

Figure 3: Main interface of the qEEGT plugin in CBRAIN. The necessary parameters for qEGT calculations are defined here. 

h) Once the user has selected the appropriate options for the pipeline, including the input 

directory, input file and output directory, must click on the option “Start qeeg” option. 

CBRAIN launches the pipeline on remote resources, manages the execution and provide 

monitoring of the launched task. Once finished, places the results to any location in the 

CBRAIN ecosystem that the user specified. 

To have a fast view at the results and produce the outputs shown in Error! Reference source not found., 

Error! Reference source not found., Error! Reference source not found. and more the user only needs 

to enter the results directory, the figures will start to be showing and the user obtain a new one by 

clicking on the results files. 

Ease of use 

We have measured the ease of use of the qEEGt-plugin for CBRAIN. For this purpose, we selected 12 

first and second-year Master students in Biomedical Engineering from the University of Electronic 

Science and Technology of China. These students did not have any prior exposure either to CBRAIN or to 



the qEEGT toolbox, were not fluent in English, and used a network connected to CBRAIN with a 

bandwidth of 10 Mbits/second. We obtained, from the time logs of CBRAIN, the time each student used 

first to calculate the qEEGT measures and later, in a second session, to inspect the results and load the 

qEEGt results images as shown in Figure 4. As shown in Figure 9, the median time for qEEGt processing 

was 15 minutes with a range from 9 to 26 minutes. This dispersion of processing time depended 

critically on the length of the que for the process queue. Logging in again and visualizing results had a 

median duration of 2 minutes and a dispersion from 1 to 5 minutes. 

 

Figure 4. Distribution of times in minutes for carrying out qEEG processes and for inspection of results.  

 

  



Appendix III: Accepted EEG formats for the qEEGT toolbox 

ASCII format 

EEG data saved in text format is accepted, with the following format: 

NAME=Jane Doe 
 SEX=F 
 AGE=20.94 
 SAMPLING_FREQ=200 
 EPOCH_SIZE=512 
 NCHANNELS=19 
 MONTAGE= 
 Fp1-REF 
 Fp2-REF 
 F3_-REF 
… 

and so on. The program expects NCHANNELS lines with their names. AFTER THE CHANNELS NAMES, THE 

EEG DATA COMES BY LINES where each line is an instant of time and each column represents a channel. 

If the EEG contains 30 segments of 512 points each and 19 channels, then 

30*512 lines of 19 columns of numbers (either float or integer) are expected. 
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