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APPENDIX
PROCEDURE FOR MODEL TUNING
In Figure A4, we present two model solutions presented in the
main section, the independent line attractor model (ILA model)
and the null position model (NP model). For simplicity, we use
the Heaviside input-output functions to build the two model
solutions. We note, however, that the results are generalizable to
smoother, sigmoidal functions (see Figure A5). Accordingly, in
(XR, XL) space, each neuron (for instance, a right neuron) has an
output of 0 below the threshold, and bi above it, with a threshold
defined by the line equation

aiXR − ciXL + hi = 0 (A1)

As a consequence, since the right nullcline is a sum over these 2D-
Heaviside functions (see Equation 13), the nullcline resembles a
staircase in 2D, where the Heaviside threshold lines limit the size
of the stairs. In practice, we tune the model by carefully placing
the Heaviside threshold lines (A1) in the (XR, XL) space. This is
done in six steps: the first three steps correspond to the tuning of
the dynamics, and the last three steps correspond to the compu-
tation of the network parameters that ensure the dynamics. For
example, for the right neurons:

1. Choose a concrete value for β. Since our network has 36
neurons, we choose β = 36.

2. Choose bi. For simplicity, we assume bi = 1.
3. Design the nullcline of the right population activity, and

desired right population activity dynamics outside of the
attractor. The nullcline is defined as the stationary solutions
XR to the equation

XR =
n∑

i = 1

biH(aiXR − ciXL + hi) (A2)

The nullcline resembles a staircase in 2D, where each neuron
introduces a stair. To design the nullcline, we carefully choose
the lower and upper limits (Xlow

Li , X
up
Li ) of each stair at X∗

Ri =
i (i = 0, . . . , n).

4. In turn, these limits correspond to points on the Heaviside
threshold lines (see Equation A1), and allow us to compute the
respective line equations. For example, in the NP model, the
stair defined at XR4 = 4 has the lower limit Xlow

L4 = 31.5, and

the stair at XR5 = 5 has the upper limit X
up
L5 = 49. Therefore,

we have two points with which we can compute the slope and
y-intercept of the threshold line for neuron 5:

slope = X
up
L5 − Xlow

L4 = 17.5 (A3)

y-intercept = X
up
L5 − slopeXR5 = −38.5 (A4)

Given the Heaviside threshold line equations (A1) and the
relation between λ and the parameters ai and ci (see Equations
9,10), the ‘slope’ and ‘threshold’ allow us to compute the
parameters λi. We note that with this procedure, the tuning
curve thresholds ti are approximately equally spaced across the
whole range.

5. Choose tuning curves slopes si. To ensure the recruitment
order feature (Figure A2), these slopes should monotonically
increase with ti, i.e., these should increase for neurons crossing
the line attractor XR + XL = β further to the right.

6. After the steps above, we have determined all the parameters
(si, ti, λi, β). As such, we can compute the network parameters
(ai, ci, hi) following Equations 9–11.

We assume the two halves of the integrator are symmetric so that
left neurons have the same parameters as right neurons.

The ILA and NP model nullclines and dynamics are illustrated
in Figure A4. A table with the parameter values for both ILA
model and NP model is provided in Table A1.

NEURAL INTEGRATOR MAPPING TO EYE POSITION
In our study, we perturbed the oculomotor integrator and thereby
observed its dynamics beyond its normal operating regime.
Consequently, we need to determine the function between eye
position and synaptic population outputs in the whole space
(XR, XL). We have previously defined how eye position relates to
the synaptic population outputs (XR, XL) in the normal operat-
ing regime (see Equation 2), but we still lack a model of how they
relate outside of this regime.

To build a model of the complete mapping, we will start on
the motor side. Horizontal eye movements are the result of the
innervation of two antagonist muscles (medial rectus and lat-
eral rectus) by motor neurons (Figure 1A). The tuning curves
of these motor neurons have been determined in the goldfish
(Pastor et al., 1991), see Figure A3A, so that we can relate the
activity of the motor neuron population to the eye position in
the system’s normal operating. We define the motor population
activities as m∗

R and m∗
L and write

m∗
R =

n∑
i = 1

r∗
mR,i(θ) = G(θ) (A5)

m∗
L =

n∑
i = 1

r∗
mL,i(θ) = G(−θ) (A6)

where r∗
mR,i(θ) and r∗

mL,i(θ) are the activities of individual right
and left motor neurons (see Figure A3A), and θ is the eye position
as before. The star indicates that the relation holds only in the
system’s normal operating regime. The (non-linear) dependency
of the motor population activities as a function of eye position is
indicated by the function G(·) (see dashed lines in Figure A3B).
Note that for simplicity we assume that there are as many motor
neurons as position neurons, i.e., n motor neurons on each side.

Next, we want to invert and generalize this relation, i.e., decide
how the eye positions depends on arbitrary combinations of the
left and right motor population activities. For simplicity, we will
assume that the eye position is determined by the difference
between mR and mL. When the system is operating normally, the
difference of population activity maps onto eye position as

θ = fm
(
m∗

R − m∗
L

)
(A7)
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Table A1 | Network parameter values for ILA model and NP model: position neurons.

For each model (ILA and NP model), parameter values are shown for each neuron on one population (left or right OI). We assume complete symmetry of the two

populations, so that neurons in the two populations have exactly the same set of parameters values.
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Table A2 | Network parameter values for ILA model and NP model: motor neurons.

For each model (ILA and NP model), parameter values are shown for each neuron on one population (left or right motor neuron population). We assume complete

symmetry of the two populations, so that neurons in the two populations have exactly the same set of parameters values.
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FIGURE A1 | Single neuron model and population activity space.

(A–C) Single neuron model (Machens and Brody, 2008). (A) Threshold
linear mapping [·] from synaptic input xin to firing rate output rout. The
neuron has a threshold xth which the input has to pass to generate a
firing response. (B) Saturating mapping g(·) from the neuron’s firing
rate rout to synaptic output xout. (C) The synaptic output xout is related
to the synaptic input xin by the function H(·). xth has the same
definition as in (A). (D) Abstracted tuning curves of right (blue) and left

(red) position cells, based on (Aksay et al., 2007). (E) Population
activity of right and left half of the integrator as a function of eye
position. (F) Line of population activities in the normal operating
regime. (G) Single-cell synaptic activity curve of a right position cell.
(H) Fitted synaptic population activities of right and left half of the
integrator as a function of eye position. (I) From the fitted synaptic
population activities in (H), we obtain the desired line of synaptic
population activities in the normal working regime.

where fm(·) is a non-linearity determined by the data. It can be
read off from Figure A3C. Note that, as before, right range posi-
tions are defined as positive eye positions, and left range positions
as negative. As can be seen in Figure A3C, the stable eye posi-
tions are approximately equal to the difference between the motor
population activities, m∗

R and m∗
L. We are going to assume that

this function generalizes to the whole motor population space
(mR, mL), so that θ = fm(mR − mL).

In the next step, we need to determine the relation between
position neuron activities and motor neuron activities. Again,
we will first focus on the system’s normal operating regime and
relate the tuning curves of position and motor neurons. From
(Pastor et al., 1991; Aksay et al., 2000), we can see that in the gold-
fish, motor neuron tuning curves have on average higher slopes
(2.5 times) and more central thresholds (shift of around 15
degrees toward the center) than position neuron tuning curves
(compare Figure 1C and Figure A3A). Therefore, the sums of the
right and left motor tuning curves, m∗

R and m∗
L respectively, are

non-linearly related to the sums of the right and left position
neuron tuning curves, p∗

R and p∗
L respectively,

m∗
R = f

(
p∗

R

)
(A8)

m∗
L = f

(
p∗

L

)
. (A9)

where p∗
R and p∗

L are defined as the sums of the individual firing
rates rR,i and rL,i (Figures 1C,D), respectively:

p∗
R =

n∑
i = 1

rR,i (A10)

p∗
L =

n∑
i = 1

rL,i (A11)

The relation (A8), and thereby the function f (·), is plotted in
Figure A3B (inset). This function is determined by the data
obtained while the system is working normally; for simplicity,
we will assume that the function generalizes to the whole activ-
ity space, i.e., for (pR, pL) to (mR, mL). As a result, mR changes
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FIGURE A2 | Recruitment order. (A) Recruitment order of position cells:
the more central the tuning curve threshold, the bigger the slope of the
tuning curve (see tuning curves in Figure A1D). (B) There is a manifold of
solutions to the recruitment order in the parameter space. The parameters
a, c, and h can be interpreted as auto-excitation, cross-inhibition and tonic
input, respectively. Two specific solutions are highlighted: Seung 1996
model without cross-inhibition (Seung, 1996), and a model exclusively with
cross-inhibition.

very little when pR is small, so that eye position is almost inde-
pendent of pR and depends mostly on pL in the left motor range.
The reverse is true in the right motor range.

Finally, we recapitulate the dependencies of the position neu-
ron population activities (pR, pL) and their synaptic counter
parts, (XR, XL). These variables are related supra-linearly (see
Figures 1D,F),

pR =
n∑

i = 1

rR,i =
n∑

i = 1

[aiXR − ciXL + hi]+ = k(XR, XL) (A12)

pL =
n∑

i = 1

rL,i =
n∑

i = 1

[aiXL − ciXR + hi]+ = k(XL, XR), (A13)

where the function k(·, ·) captures the relevant mapping.
In summary, θ is related to the synaptic population activities,

XR and XL, as

θ = fm(mR − mL)

= fm
(
f (pR) − f (pL)

) =: fp
(
pR, pL

)

= fp(k (XR, XL) , k (XL, XR)) =: fx(XR, XL) .

(A14)

The mapping of the synaptic population activities onto eye posi-
tion, fx(XR, XL), is shown in Figure A3D. As a result of (1)
the convex relation between (mR, mL) and (pR, pL), and (2)
the supra-linear relation between (pR, pL) and (XR, XL), the eye
position isolines have strong curvatures in the (XR, XL)-space
(Figure A3D).

MOTOR NEURONS PARAMETERS
Given previous findings in the goldfish (Pastor et al., 1991;
Aksay et al., 2000), we assume that the motor neurons receive
an excitatory input from the ipsilateral integrator population
weighted by di, an inhibitory input from the opposing integra-
tor population weighted by ei and and external input ki, so that

the firing rates of motor neurons are given by

rmR,i = [diXR − eiXL + ki]+ (A15)

rmL,i = [diXL − eiXR + ki]+ (A16)

where i = 1, . . . , n indexes the neuron. As with the position neu-
rons, for simplicity we assume that neurons in the two sides have
equal parameters values. The parameters of motor neurons for
both the ILA and NP models are provided in Table A2.

FITTING THE DYNAMICS WITH SMOOTH SIGMOIDS
Discontinuities in the vector field
Since the input-output functions are step-like functions, the vec-
tor field shows small discontinuities on the dynamics. However,
even if derivatives in a dynamical system are discontinuous, the
actual state space trajectory will still be continuous. In our mod-
eling framework, these discontinuities are of two types, and lead
to absolutely no theoretical or practical problems:

• Discontinuities where the dynamics switches direction in the
transition through the threshold lines of Heaviside functions.
These will appear in areas of unstable points. In these cases,
smoother input-output functions lead to smooth transitions
in the derivatives across the unstable points, and the diverging
dynamics around the attractor are qualitatively similar to the
case with heaviside functions.

• Discontinuities where the dynamics keep the same direction
in the transition through the threshold lines of the Heaviside
functions. In these cases, each discontinuity has a magnitude of
one Heaviside function, which is much smaller than the over-
all population activities, therefore having negligible impact on
the dynamics. Again, we can relax the Heaviside functions to
smooth sigmoidals without any impact on the dynamics of the
system.

These discontinuities, which can be seen on a much finer scale,
do not affect any of our conclusions: they can be eliminated by
moving toward smooth, sigmoidal functions. To illustrate this,
we fitted the ILA and NP model dynamics with smoother sig-
moidals (please see Figure A5). As can be seen, the relaxation
of the Heaviside assumption does not qualitatively change our
results.

Smooth sigmoids fitting
In this section, we illustrate a fitting procedure of the ILA and NP
dynamics with smooth sigmoidal functions.

The original model dynamics are described by:

τẊR(t) = −XR(t) +
n∑

i = 1

biH(aiXR(t) − ciXL(t) + hi) (A17)

τẊL(t) = −XL(t) +
n∑

i = 1

biH(aiXL(t) − ciXR(t) + hi) (A18)

where n = 36, bi = 1 for all i (in the ILA and NP models).
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FIGURE A3 | Eye position mapping. (A) Abstracted motor neurons’
tuning curves (Pastor et al., 1991). Typically, the thresholds are shifted
toward the center and slopes are bigger, when compared to the
position neuron tuning curves (compare Figure 1C). (B) Population
activity of right and left half of the integrator (solid lines) and right and
left motor neurons (dashed line) as a function of eye position. Inset:
the function between motor population activity and ipsilateral position
population activity (in blue) is sub-linear for small position population
activity, and supra-linear for large position population activity, as

evidenced by the identity line in gray. (C) Horizontal eye movements
are the result of the innervation of two antagonist muscles (medial
rectus and lateral rectus) by motor neurons delivering the position
signal. Eye position θ is approximately equal to the difference between
right and left motor population activities, mR and mL. (D) Mapping fx
of position synaptic population activities onto eye position is non-linear.
The colored iso-lines correspond to different eye positions θ in the
(XR, XL) space. The gray line indicates the line attractor and thereby
the stable equilibrium states of the system.

We fit the dynamics above with the following model:

τẊR(t) = −XR(t) +
m∑

i = 1

βig(αiXR(t) − γiXL(t) + δi) (A19)

τẊL(t) = −XL(t) +
m∑

i = 1

βig(αiXL(t) − γiXR(t) + δi) (A20)

where m >> n, (αi, γi, δi) are parameters randomly set to span
the whole range of possible values of (ai, ci, hi). g(·) is a sigmoidal
function given by

g(x) = [x]+
10Hz + [x]+

(A21)

Given this model, we follow a linear least squares procedure to fit
the parameters βi (constrained to be zero or positive) which make
the model Equations (A19,A20) best approximate the dynamics
given by Equations (A17,A18). With this procedure, only a sub-
set of the parameters βi (on the order of the original number of
neurons n) is different from zero.

In Figures A5A,C, we can see the fitted dynamics of the ILA
and NP models, respectively. As can be seen, the dynamics of
the original models (Figures A4A,B) are well fitted by the cor-
responding approximations (Figures A5A,C), and this by using
smooth sigmoids (Figures A5B,D).

DATA INCLUDING HIGH INTENSITY STIMULATIONS
We are interested in inferring the dynamics of the system out-
side of the normal operating regime. In the main section of the
paper, we have succeeded to extract the dynamics in the neighbor-
hood of the normal operating regime, by stimulating the system
with brief and small intensity stimulations. When we increase
the stimulation intensities, the system behaves differently than
expected, which could indicate e.g., limitations in the spatial pre-
cision of stimulation, or new features in the system’s network
structure.

More specifically, when we stimulate the left half of the inte-
grator of the NpHR animals with higher intensities (light power
above 0.8 mW), new features arise in the right range, i.e., a
small eye movement toward the left emerges, and tends to be
stronger for higher stimulation intensities and eccentric initial eye
positions (Figures A6A,B). This slight deviation from the model
could be caused by light scattering to the right half of the integra-
tor when stimulating the left half (simulation data not shown).
We note a difference between the response of the two eyes, a prop-
erty that our model does not address: in the left range, the left
eye is slightly more responsive than the right eye; in the right
range, the right eye is slightly more responsive than the left eye
(Figures A6A,B). This result might be related to the fact that
each integrator half encodes mostly the position of the ipsilateral
eye, in agreement with the findings of (Debowy and Baker, 2011).
To a first approximation, however, the predictions from our
model remain fairly acceptable, accounting for most of NpHR
stimulation results.
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FIGURE A4 | The ILA and NP models: nullclines and dynamics. (A)

ILA model and (B) NP model. Left: in the (XR, XL) space, the blue
and red thick lines correspond to the right nullcline and left nullcline
respectively. Fixed points are at the intersection of the nullclines.
Right: different initial points out of the attractor in the (XR, XL) space
relax toward the stable points in the line XR + XL = 36. The
corresponding trajectories are in gray, and the black arrows indicate
the direction of the flow. (C) Fine-scale dynamics in the vicinity of a
stable point in the NP model. In all models, the line attractor is
approximated through a series of stable fixed points. Here one of
these fixed points is shown, including eight different trajectories,
relaxing from different initial points onto the fixed point
(XL, XR) = (6, 30). (D) Trajectories of the NP model in the presence of
small noise. Same representation as in (B). Noise in the dynamics
introduces a small drift toward the central point.

In ChR2 animals, higher intensity stimulations (light power
above 0.8 mW) induce movements toward the right in the
left starting positions, which contrasts with both ILA and NP
model predictions (Figures 3H, 7H). However, the results may
be explained in the NP model if we assume either that higher
intensity stimulations residually affect the opposite half of the
integrator, or other parts of the system, such as vestibular neu-
rons. In Figure 8, we show how the stimulation of afferents to the
integrator, such as vestibular neurons, could account for the ChR2
high intensity stimulations results.

FIGURE A5 | Fitting the dynamics with smooth sigmoids. (A) Fitted ILA
model. Vector field of XR vs XL, having fixed points approximately in the line
XR + XL = 36. Five different initial points out of the attractor in the (XR, XL)

space relax toward the stable points indicated by black dots. The
corresponding trajectories are in gray. The fitted model has 32 neurons. (B)

Sigmoidal input-output functions used for the ILA dynamics fit. (C) Fitted
NP model dynamics. Five different initial points out of the attractor in the
(XR, XL) space relax toward the stable points indicated by black dots. The
corresponding trajectories are in gray. The fitted model has 30 neurons. (D)

Sigmoidal input-output functions used for the NP
dynamics fit.
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FIGURE A6 | NpHR and ChR2 data including high stimulation

intensities and resolved for individual eyes. (A) Eye position changes
�θ caused by NpHR stimulation versus eye position previous to
stimulation. Spline fit averages across all tested fish (n = 24 recordings).
Legends indicate the light power averages (in mW) for each bin and
respective standard errors across recordings. In the left range, left eye

(left) is more responsive than the right eye (right). In the right range,
the right eye is more responsive than the left eye. (B) Eye position
changes �θ caused by ChR2 stimulation versus eye position previous
to stimulation. Spline fit averages across all tested fish (n = 19
recordings). The 2 highest intensity bins generate centripetal
movements from both sides.
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FIGURE A7 | Photoconversion experiments reveal fiber optic light spread

within the larval zebrafish. (A) Dorsal view of a zebrafish expressing
the photoconvertible fluorophore Kaede [Et(E1b:Gal4)s1101t,
Tg(UAS:Kaede)s1999t]. In (B) a thin optic fiber (10 μm diameter,
NA = 0.1, Thorlabs HPSC10) has been placed above the hindbrain and
Kaede has been photoconverted to red using a UV laser. In (C) a
50 μm diameter fiber (NA = 0.22) has been placed above the midbrain.
(B) The photoconverted column imaged from the side. Note the

unexpected curvature of the light path which was presumably caused
by cell migration during the ∼3 h between photoconversion and imaging.
(C) Side view reconstructed from a dorsal z-stack. (D–G) Single optical
slices at the levels indicated in (B) reveal the lateral spread of light
using a 10 μm diameter fiber. (H–K) Single optical slices at the levels
indicated in (C) reveal the lateral spread of light using a 50 μm
diameter fiber. Scale bars are 50 μm in (A–C) and (H–K) and 10 μm
in (D–G).
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FIGURE A8 | Mapping of NpHR-induced eye drift magnitudes. (A) For
each fish, eye and hindbrain position, the eye drift velocity was plotted
against the initial eye position. For each eye position range (ipsiversive,
contraversive) and stimulation condition (stimulated, control), linear
regressions were performed through the origin. The slope of the fit

corresponds to the inverse of the eye drift time constant (1/τ). (B) The
induced eye drifts of the eye ipsilateral to the stimulation in one fish. (C,D)

Mapping of eye drift magnitudes. Eye drift magnitudes for the eyes ipsilateral
to the stimulation (C) and contralateral to the stimulation (D) of 7 animals are
plotted and Gaussian functions are fitted.
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FIGURE A9 | Dependence of optogenetic firing rate manipulation on

initial firing rate. (A) The spontaneous firing rate of NpHR or ChR2
expressing neurons in the hindbrain was recorded during light stimulation
(F2) and at rest (F1). Unprocessed current trace (top) and corresponding
single-unit firing rate histogram (middle) of a NpHR expressing cell that was
silenced during illumination (yellow shaded boxes). Bottom: A ChR2
expressing cell fired at a higher rate upon stimulation with blue light (blue
shaded boxes). (A) Is reproduced from Arrenberg et al. (2009) and the
electrophysiological data from this publication was analyzed to generate
(B,C). Scale bars: 10 s. (B) The difference between the firing rate during
illumination and the firing rate at rest (F2-F1) is plotted against the firing rate
at rest (F1) for NpHR expressing cells. The firing rate change is dependent
on the initial firing rate, as suggested by the linear fit (black line, R2 = 0.85).
The inset in the upper right shows a magnified view of the data close to the
origin. (C) The difference between the firing rate during illumination and the
firing rate at rest (F2-F1) is plotted against the firing rate at rest (F1) for
ChR2 expressing cells. The firing rate change is independent of the firing
rate at rest (R2 = 0.0016). The inset in the upper right shows a

(Continued)

FIGURE A9 | Continued

magnified view of the data close to the origin. Note that the firing rates at
rest apparently differ for NpHR and ChR2 expressing cells. This is possibly
the result of a biased sampling by the experimenter: for ChR2 expressing
cells, many cells that showed almost no firing at rest were selected for
ChR2 recordings, whereas for NpHR such cells with low activity were not
selected for recordings and instead cells with a higher baseline activity
were searched.
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