

Supplementary Material

TABLE 1: Bacterial strains used in this study.							
name in the text	full designation	accession	genotype or relevant phenotype	reference			
7698R	7698R	CFBP 13420	spontaneous <i>Rifr</i> derivative of strain CFBP 7698	Meline 2019			
7698R pIJ3225	7698R pIJ3225	CFBP 13431	13431 plJ3225	Meline 2019			
C3	7698R pIJ3225 C3	CFBP 13465	Rifr, Tetr, Kanr	Meline 2019			
F2	7698R pIJ3225 F2	CFBP 13468	Rifr, Tetr, Kanr	Meline 2019			
F15	7698R pIJ3225 F15	CFBP 13467	Rifr, Tetr, Kanr	Meline 2019			
G1	7698R pIJ3225 G1	CFBP 13470	Rifr, Tetr, Kanr	Meline 2019			
G2	7698R pIJ3225 G2	CFBP 13472	Rifr, Tetr, Kanr	Meline 2019			
G9	7698R pIJ3225 G9	CFBP 13474	Rifr, Tetr, Kanr	Meline 2019			
EHA105	Agrobacterium EHA105 no protein express	/	genta	this study			
GUS	Agrobacterium EHA105 pB7FWG2-gus		genta, spec	this study			
AF	Agrobacterium EHA105 pB7FWG2-xopAF		genta, spec	this study			
L	Agrobacterium EHA105 pB7FWG2-xopL	1	genta, spec	this study			
G	Agrobacterium EHA105 pB7FWG2-xopG		genta, spec	this study			
V	Agrobacterium EHA105 pB7FWG2-xopV		genta, spec	this study			
Т	Agrobacterium EHA105 pB7FWG2-xopT	1	genta, spec	this study			
AK	Agrobacterium EHA105 pB7FWG2-xopAK	/	genta, spec	this study			

For more information on the localisation of the various Tn5 insertions in the hrp cluster, please see reference Meline et al. 2019, Molecular Plant Pathology.

TABLE 2: PCR primers used in this study. These PCR primers were designed on X. fuscans pv. citri 4834, dedicated to this study.

targeted gene	forward primers	reverse primers	amplicon (bp)
xopAF	CACC ATGGGCCTATGCATTAC	GGCGGCAACCAAATGCTT	843
xopG	CACC ATGCCAATCAGTCAAACAAAC	CATGCCGTGAGGCTTATATTTTTGCG	642
xopL	CACCATGAACGAGGCGGCTGG	CTGCTGGCCTGAAGCTTCCGG	1716
xopT	CACCATGCGCCCTCTTTCGCCC	CGCTCCAGGGTGGTTCAACC	948
xopAK	CACCATGGGTGGGACTGTTGACC	CCACGACTTGTAGTAGAAGATGC	878
xopV	CACCATGAAAATCTCCGGCTCGG	TTCGCCGTTCGGATCAGAATG	996

$\left \begin{array}{c} F_M \\ F_0 \end{array} \right $	$\begin{array}{cccc} F_p & F_M _ L1 \\ \downarrow & F_t \ L1 \ \downarrow & F_t \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Dark adap	ted period	Light adapted period Dark relaxation
0 5	15.8 20.3 24.8	37.1 49.3 61.6 73.8 75.8 84.8 95.8 (s)
Symbol	Formula	Name
$\frac{1}{F_o}$	Measure	Minimal chlorophyll fluorescence intensity measured during the dark adapted state
$F_{o}Ln$	$F_0 / ((F_M - F_0) / (F_M + F_0 / F_M Ln))$	Minimal chlorophyll fluorescence intensity measured during the light adapted state
F _o _Lss	$Fo / ((F_M - F_o) / (F_M + F_o / F_M Lss))$	Minimal chlorophyll fluorescence intensity measured during the light steady state
$F_{o}Dn$	Measure	Minimal chlorophyll fluorescence intensity measured during the dark relaxation state
F_M	Measure	Maximal chlorophyll fluorescence intensity measured during the dark adapted state
$F_{M}Ln$	Measure	Maximal chlorophyll fluorescence intensity measured during the light adapted state
$F_{M}Lss$	Measure	Maximal chlorophyll fluorescence intensity measured during the light steady state
F_M_Dn	Measure	Maximal chlorophyll fluorescence intensity measured during the dark relaxation state
<i>Fp</i>	Measure	Peak fluoresence measured during the initial phase of the Kautsky effect
Ft_Ln	Measure	Instantaneous fluoresence intensity measured during the light adapted state
	Measure	Instantaneous fluoresence intensity measured during the light steady state
Ft_Dn	Measure	Instantaneous fluoresence intensity measured during the dark relaxation state
F_{v}	FM - Fo	Variable fluorescence calculated during the dark adapted state
$F_{v}Ln$	F _M - F _o _Ln	Variable fluorescence calculated during the light adapted state
F_{v_Lss}	F _M - F _O Lss	Variable fluorescence calculated during the light steady state
$\frac{F_q Ln}{\Gamma}$	F _M _Ln - F _L _Ln	Variable fluorescence calculated during the light adapted state
F_q_Lss	$F_{M}Lss - F_{t}Lss$	Variable fluorescence calculated during the light steady state
NPQ_Ln	$(F_M - F_M Ln) / (F_M Ln)$	Non photochemical quenching calculated during the light adapted state
NPQ_LSS	$(F_{M} - F_{M} Lss) / (F_{M} Lss)$	Non photochemical quenching calculated during the dark relevation state
Dn	$(\mathbf{F}_{\mathbf{M}} - \mathbf{F}_{\mathbf{M}} - \mathbf{D}\mathbf{I})/(\mathbf{F}_{\mathbf{M}} - \mathbf{D}\mathbf{I})$	Non photochemical quelening calculated during the dark relaxation state
Qy_Ln	$(F_M_Ln - F_Ln)/F_M_Ln$	Instantaneous PSII quantum yield calculated during the light adapted state
$\frac{Qy_{LSS}}{Qy_{Dy}}$	$(F_{M} Lss - F_{L} Lss) / F_{M} Lss$	Instantaneous PSII quantum yield calculated during the light steady state
$\frac{Qy_Dn}{F_F_M}$	$(F_M - F_0) / F_M Di$	PSII quantum vield calculated during the dark adapted state
$\frac{F_{V}F_{M}}{F_{V}F_{M}Ln}$	$(F_M Ln - F_0 Lss)/F_M Ln$	PSII quantum yield calculated during the light adapted state
F.F. Lss	$(F_{M} Lss - F_{\alpha} Lss) / F_{M} Lss$	PSII quantum yield calculated during the light steady state
$\frac{aP Ln}{aP Ln}$	$(E_{M} Ln - E_{t} Ln)/(E_{M} Ln - E_{0} Ln)$	PSII Coefficient of photochemical quenching calculated during the light adapted state
$\frac{qr}{aP}$ Lss	$(F_M Lss - F_T Lss)/(F_M Lss - F_0 Lss)$	PSII Coefficient of photochemical quenching calculated during the light steady state
$\frac{q_{1}}{aP} Dn$	$(F_M Dn - F_t Dn)/(F_M Dn - F_c Dn)$	PSII Coefficient of photochemical quenching calculated during the dark relaxation state
$\frac{qP_Ln}{qP_Ln}$	$(F_{M}Ln - F_{L}Ln) / (F_{M}Ln - F_{O}Ln)$	PSII Coefficient of photochemical quenching calculated during the light adapted state
qP Lss	$(F_{M}$ Lss - F_{L} Lss) / $(F_{M}$ Lss - F_{O} Lss)	PSII Coefficient of photochemical quenching calculated during the light steady state
qL_Ln	(Fq_Ln / Fv_Ln) / (Fo / Ft)	PSII Coefficient of photochemical quenching calculated during the dark relaxation state
	$(F_p - F_t Ln) / (F_t Ln)$	Fluorescence decline ratio calculated during the light adapted state
Rfd_Lss	$(F_p - F_t Lss) / (F_t Lss)$	Fluorescence decline ratio calculated during the light steady state

Figure S1. A description of the CF quenching protocol providing the measured and calculated images of CF parameters used in this study. To measure F_0 , a modulated light of 0.1 μ mol.m⁻².s⁻¹ is used. Then 618 nm orange actinic light with intensities of 20% of the 400 μ mol.m⁻².s⁻¹ is used during the light-adapted period of 60 sec. The protocol also provides 6 pulses of 0.8 sec duration of 455nm blue saturating light with an intensity of 50% of the 3000 μ mol.m⁻².s⁻¹: 5 pulses during the light-adapted period and 1 pulse during the dark-relaxation period. The whole duration of the illumination protocol is of 95.8 sec. Twelve parameters are used in the analysis: F_0 , F_m , F_p , Ft, F_v , F_q , NPQ, Qy, qP, qL, Rfd and F_v/F_m . Among these 12 parameters, F_0 , F_m , F_p , Ft, F_v are measured to generate images. For each measured parameters, several measures/images are performed during the illumination process, as depicted in the upper part of the figure S1. For example, for parameter F_m , the initial measurement Fm is measured after 5 seconds during the dark-adapted period. Then, 5 measurements are realised during the light-adapted period (F_mL1 to $F_mL4 + F_mLss$). One last measurement is done during dark relaxation (F_mD1). The precise timing of

the measurement is mentioned in the X-axis of the chart. The other parameters are calculated according to the formulas. In total, the measures performed lead to the generation of 70 images, corresponding to the various parameters used in the analysis.

Figure S2. Dendrograms obtained from the computation method according to the use of a combination of the 70 images of CF parameters (A.), sole F_v/F_m parameter (B.) and sole NPQ parameter (C.) respectively. Dendrograms are based on three-dimensional Euclidean distances evaluation and Ward agglomeration method.