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1 SPHERICAL HARMONICS AND SPHERICAL CONVOLUTION

1.1 Signal Approximation with Spherical Harmonics

Spherical Harmonics (SH), normally indicated by Y ml (l denotes the order and m the phase factor), is a
basic for complex functions on the unit sphere. Explicitly, they are given as follows

Y ml (θ, φ) =
√

(
2l + 1

4π

(l −m)!

(l +m)!
)Pml (cos θ)eimφ (S1)

where (θ, φ) obey physics convention (θ ∈ [0, π], φ ∈ [0, 2π]) and Pml is an associated Legendre polynomial.
Following Descoteaux et al. (2007), for l = 0, 2, 4, . . . , lmax and m = −l, . . . , 0, . . . , l, we define the new
index j := (j(l,m) = (l2 + l + 2)/2 +m and define our modified basis Y with elements Yj such that

Yj =


√

2 · Re(Y kl ) if− l ≤ m < 0
Y 0
l ifm = 0√

2 · Img(Y kl ) if0 < m ≤ l

 (S2)

where Re(Y ml ) and Img(Y ml ) represent the real and imagnary parts of Y ml , respectively. The basis is
designed to be symmetric, real and orthonormal. We thus approximate the signal, for a certain shell, at
each of the N gradients i as

S(ni) = S(θi, φi) =

Nc∑
j=1

cjYj(θi, φi), (S3)

where Nc = (lmax + 1)(lmax + 2)/2 is the number of terms in the modified SH basis Y of order l. Letting y
be the Ns × 1 vector representing the input signal of every encoding gradient direction of shell s, c the
Nc × 1 vector of SH coefficients cj and Ψ is the Ns ×Nc matrix constructed with the discrete modified
SH basis

Ψ =

 Y1(n1) Y2(n1) . . . YNc(n1)
...

... . . . ...
Y1(nNs) Y2(nNs) . . . YNc(nNs)

 (S4)

we can write the set of equations as an over-determined linear system y = Ψc. To estimate the SH
coefficients from the measures signal, we can thus invert this equation such that c = Ψ†y, where †

represents the Penrose pseudo-inverse.

1.2 Spherical Mean from Spherical Harmonics

While it is hard to properly calculate the spherical mean of the signal from the discrete measurements, it
is simple to do so using the spherical harmonics expansion. In fact, after c has been recovered, then the
spherical mean is given by 2

√
π cm=0,l=0, where the 2

√
π is the jacobian on the sphere.
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1.3 Single-Shell, Single-Compartment Spherical Convolution

As spherical harmonics are analogous to the spherical Fourier transform, they provide the same benefits
advantages when it comes to spherical convolution: A convolution of two spherical functions in the regular
space can instead be performed by multiplying their SH coefficients. For this reason, one of the main
applications of spherical harmonics in dMRI is to facilitate the spherical convolution of some spherical
distribution function F(n) : S2 → [0,∞] with some spherical kernel function K(n) : S2 → [0,∞], given
continuously by

S(n) =

∫
S2

F(n− u)×K(u)du (S5)

To perform the spherical convolution using spherical harmonics, the F must be transformed to spherical
harmonics, and K must be transformed to rotational harmonics. Rotational harmonics are a special case of
spherical harmonics where the spherical profile is axially symmetric and aligned along the Z-axis. In this
case, the profile can be described using only the even l,m = 0 SH coefficients. For a given spherical and
rotational harmonics expansion of F and K, the convolution Eq. (S5) can be given by

Ŝl[j],m[j] =

√
4π

(2l[j] + 1)
F̂l[j],m[j]K̂l[j],m=0 (S6)

where the first term represents the Eigenvalues of the SH expansion, see e.g. https://www.cs.jhu.
edu/˜misha/Spring15/17.pdf, slide 59-60.

Assuming the convolution kernel is known, we are interested in recovering the convolved signal S in
the normal space using a single matrix-vector multiplication with the SH coefficients of distribution F.
This can be achieved by combining Eqs. (S4) and (S6) to create spherical convolution matrix M of shape
Ns ×Nc such that

ySS = Mc with M[i, j] =

√
4π

(2l[j] + 1)
K̂l[j],m=0Yl[j],m[j](n[i]). (S7)

1.4 Multi-Shell, Single-Compartment Spherical Convolution

So far, we’ve been considering that the measured signal, kernel and FOD all live on a single spherical
shell. In dMRI, however, the signal and kernel can be measured at multiple shells s at the same time. As
the spherical convolution in Eq. (S7) must be applied separately to each shell, but for the same FOD
coefficients, we can create a multi-shell convolution matrix as a horizontal concatenation of single-shell
convolution matrices. Let yMS = [y1, . . . , yNs

] be the multi-shell signal as a list of the measurements on
different shells s. The multi-shell convolution is then given by

yMS = MMSc with MMS = [M1, . . . ,MNs ] , (S8)

where each single-shell convolution matrix Ms has been computed using the orientations n and kernel
coefficients K̂ of shell s.
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1.5 Multi-Shell, Multi-Compartment Spherical Convolution

As a last generalization, we consider the case where are representing the multi-shell measured signal S
as a linear sum of Nmod spherical convolutions. In this case, we can expand the multi-shell convolution in
Eq. (S8) to

yMC-MS = MMC-MScMC-MS =

 MMS
1
...

MMS
Nmod


 c1

...
cNmod

 , (S9)

where each MMS
n is generated according to the multi-shell formulation, with the rotational harmonics

coefficients of kernel n. Notice that the multi-compartment spherical harmonics coefficients cMC-MS are
just a concatenation of the coefficients of the single-model coefficients cn.

1.6 Single- and Multi-Compartment, Multi-Shell Spherical Deconvolution

Spherical deconvolution is performed to find the best distribution F that distributes the kernel K, such
that the resulting modeled signal best fits the measured signal. The only thing that needs to be known
is the representation of the kernel K, and the expansion order of the spherical harmonics. The obtained
FOD distribution, represented in c, must also be positive. Formally, the FOD estimation for a single kernel
(compartment) is given by

c∗ = argminc‖y−MMSc‖2 s.t. Φc ≥ 0 (S10)

where MMS is given in Eq. (S8) and Φ maps the SH coefficients c to a dense mapping on the sphere. The
generalization to multi-compartment spherical deconvolution is given by

c∗ = argminc‖y−MMC-MScMC-MS‖2 s.t. Φncn ≥ 0 (S11)

where MMC-MS is given in Eq. (S9), and Φn maps the FOD coefficients cn for kernel n to a dense
spherical sampling.

2 MATHEMATICAL REPRESENTATION OF PARAMETRIC BIOPHYSICAL
MODELS AND DISTRIBUTIONS

In Dmipy, models are either isotropic, or anisotropic but axially symmetric. Following Assaf et al. (2004),
anisotropic models can be written as a separable product of parallel and perpendicular components, such
that

Ciso(A,p) = C(A,p) (S12)

Caniso(A,p‖,p⊥) = C‖(A‖,p‖)× C⊥(A⊥,p⊥), (S13)

where the parallel and perpendicular acquisition schemes A‖ and A⊥ differ from the measured A in that
the gradient vector G = Gn is projected parallel and perpendicular to µ, such that G‖ = GTµ, and
G⊥ = (GTG− (GTµ)2))1/2. This operation is analogous for b and q.
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Table S1. Restricted Model Assumptions and principal references. Dmipy implements Planes (P), Cylinders (C), and Spheres (S). We number the approximations
consistently across geometries: 2 for short gradient pulse approximation and long diffusion time regime; 3 for long diffusion diffusion time regime only; and 4
for Gaussian Phase Approximation (GPA).

Acquisition Assumptions Dmipy Model Reference Principal Reference
P2 (Balinov et al., 1993)

δ → 0,∆� R2/D C2 (Söderman and Jönsson, 1995)
S2 (Balinov et al., 1993)
P3 (Callaghan, 1995)

δ → 0 C3 (Callaghan, 1995)
S3 (Callaghan, 1995)
P4 (Balinov et al., 1993)

GPA C4 (Vangelderen et al., 1994)
S4 (Murday and Cotts, 1968)

Dmipy’s toolbox contains parametric representations of many biophysical models and distributions, can
can be used in MC-model design. Here, we provide the explicit equations of restricted models in 2.1,
spherical distributions in 2.2 and spatial distributions in 2.3.

2.1 Restricted Models

In Table S1 we provide the acquisition assumptions, Dmipy model references and principal reference in
literature for the restricted models for Planes, Cylinders and Planes. In Table S2 we provide equations for
each representation. Please refer to the principal references for the meanings of all symbols, but notice that
the more assumptions there are on the PGSE acquisition, the simpler the mathematical representation.

2.2 Parametric Spherical Distributions

To provide a more straightforward, but less general way to quantify axon dispersion, parametric
representations for F such as the Bingham and Watson distribution have been proposed (Kaden et al.,
2007).

The Bingham distribution B(n|µ, κ1, κ2) is an antipodally symmetric distribution, centered around
direction µ, describing a possibly anisotropic density with concentration parameters κ1 and κ2 (Bingham,
1974). More formally, its probability density along normalized unit vector n is given as

B(n|µ, κ1, κ2, ψ) =
exp(nTBn)

4π 1F1(1/2; 3/2; B)
with B = RTBdiagR (S14)

with 1F1 the confluent hypergeometric function, R a rotation matrix that aligns the distribution with µ
and Bdiag = Diag(κ1, κ2, 0). Note that concentration parameters κ1, κ2 are inversely related to dispersion.
The parameters of B can only be obtained by non-linear estimation from Eq. (S5), but by giving up the
ease of estimation using SH and ability to describe multiple bundles, we now directly estimate parameters
that are related to axon dispersion. The Watson distribution W (n|µ, κ) is a special case of Bingham when
κ = κ1 = κ2, meaning W (n|µ, κ) = B(n|µ, κ, κ).

W(n|µ, κ) =
exp

(
κ(µ · n)2

)
4π 1F1(1/2; 3/2;κ)

(S15)
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Table S2. Signal approximations for diffusion inside planes (P), cylinders (C) and spheres (S) for different PGSE acquisition scheme assumptions. In all cases
the signal represents the diffusion perpendicular to the geometry boundary.

Acq. Ass. Representation

P2:
2 (1− cos(4πqR))

(4πqR)2

δ → 0,∆� R2/D C2:
(
J1(2πqR)

πqR

)2

S2:
(

3

(2πqR)2

(
sin(2πqR)

(2πqR)
− cos(2πqR)

))2

P3:

∞∑
n=0

exp

[
−ξ

2
mD∆

a2

]
2[(2πqa) sin(2πqa) cos(ξn)− ξn cos(2πqa) sin(ξn)]2

(1 + sin(2ξn)/2ξ)[(2πqa)2 − ξ2
n)]2

+

∞∑
m=0

exp

[
−ζ

2
mD∆

a2

]
2[(2πqa) cos(2πqa) sin(ζm)− ζm sin(2πqa) cos(ζm)]2

(1− sin(2ζm)/2ζm)[(2πqa)2 − ζ2
m]2

δ → 0 C3:

∞∑
k

4 exp(−β2
0kD∆/R2)×

(
(2πqR)J

′

0(2πqR)
)2(

(2πqR)2 − β2
0k

)2
+

∞∑
nk

8 exp(−β2
nkD∆/R2)×

β2
nk(

β2
nk − n2

) × ((2πqR)J
′

n(2πqR)
)2(

(2πqR)2 − β2
nk

)2
S3:

∑
nk

6 exp

[
−
a2
nkD∆

a2

]
(2n+ 1)α2

nk
1
4 + α2

nk − (n+ 1
2)2
× [(2πqa)j′n(2πqa)2

[(2πqa)2 − α2
nk]

2

P4 exp



− 8γg2a4

Dπ6

∞∑
n=0

1

2n+ 1

6

×

2δ −

2 + exp[−(2n+ 1)2π2D(∆− δ)/a2]− 2 exp[−(2n+ 1)2π2Dδ/a2]

− 2 exp[−(2n+ 1)2π2D∆/a2] + exp[−(2n+ 1)2π2D(∆ + δ)/a2]

(2n+ 1)2π2D/a2




GPA C4: exp

(
−8π2q2

∞∑
m=1

[
2Da2

mδ − 2 + 2e−Da
2
mδ + 2e−Da

2
m∆ − e−Da2m(∆−δ) − e−Da2

m(∆−δ)]
δ2D2a6

m(R2a2
m − 1)

)

S4: exp


2γ2G2

D

∞∑
m=1

a−4
m

a2
mR

2 − 2

×

[
2δ − 2 + e−a

2
mD(∆−δ) − 2e−a

2
mDδ − 2e−a

2
mD∆ + e−a

2
mD(∆+δ)

a2
mD

]


2.3 Parametric Spatial Distributions

In Dmipy we can implement parametric spatial distributions on model parameters. Gamma Distribution
The probability density of a Gamma distribution is given as

PGamma(x;α, β) =
βαxα−1e−xβ

Γ(α)
(S16)

with Γ(α) a Gamma function.
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3 GENERALIZED MODEL OPTIMIZATION

3.1 MC and MC-SM optimization

In terms of model fitting, the optimization of MC and MC-SM models are the same. The general shape of
any of model composition of these types is given by

p∗(x) =argminp

∫ [
E(x,A)− ÊMC(A,p)

]2
dA, (S17)

with ÊMC(A,p) =
N∑
i

fiCi(A,pi). (S18)

So far, we have two implemented two optimizers that can optimize for these model types. First, we
discuss the “brute2fine” optimizer that is a straight-forward implementation of brute force followed by
local optimization. Second, we have the stochastic “mix” optimizer, based on the works by Farooq et al.
(2016).

3.1.1 “brute2fine” optimization using Scipy’s L-BFGS-B

As a standard optimizer Dmipy can use Scipy’s open-source implementation of Low-memory
Broyden–Fletcher–Goldfarb–Shanno with bounds (l-BFGS-b) (Byrd et al., 1995; Jones et al., 2001–
). To summarize, the l-BFGS-b algorithm allows for the bounded minimization of arbitrary differentiable
cost functions, as long as a starting point is provided. To impose a unity constraint on the volume fractions,
we adopt the approach of Zhang et al. (2012), who nest the volume fractions of the multi-compartment
model as

S(g̃,p) = f̃1S1(g̃,p1) + (1− f̃1)f̃2S2(g̃,p2) + . . .+ (1− f̃1) . . . (1− fN−1)Sn(g̃,pn) (S19)

such that the nested volume volume fractions are all bounded by the closed unit interval 0 ≤ f̃i ≤ 1. Using
this definition, we first use a straightforward brute-force algorithm to find an initial guess for the l-BFGS-b
algorithm:

1. the signal is for optimized parameter combinations that are evenly sampled between the minimum
and maximum bounds of each parameter, with the exception of orientation - in that case, we sample
homogeneously on the sphere following the sampling approach by Caruyer et al. (2013).

2. the standard mean squared error is computed between the measured signal and all modeled signals,
and the best fit is selected as the initial guess.

In step 1 we emphasize that the parameters are sampled evenly in the optimized parameter space, which can
be different from the actual base-model parameter by introducing optimization parameters. Once the initial
guess is given to the l-BFGS-b algorithm the Scipy-native implementation is used with all its standard
optimization parameters. When the optimization finishes, the nested volume fractions are recomputed into
standard ones, which due to the nesting now by definition add up to unity.
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3.1.2 Microstructure Imaging in Crossings (MIX)

Recently, Farooq et al. (2016) proposed the microstructure in crossings (MIX) algorithm as a general
framework for dMRI multi-compartment optimization. To explain the algorithm, let us separate all model
parameters p into linear (volume fraction) parameters f and non-linear parameters x, such that p = {f, x}.
The estimation of non-linear parameters x can be solved by stochastic search procedures, for which we use
scipy’s differential evolution implementation (Storn and Price, 1997). Once estimates of x are obtained,
searching for f is a linear least-squares estimation problem. Summarizing the work of Farooq et al. (2016),
the algorithm consists of 4 steps:

Step 1 - Variable Separation: We can then rewrite the problem in Eq (S17) as

argminx,f‖E(g̃)− φ(g̃, x)fT‖22 (S20)

with φ(g̃, x) = [C1(g̃, xi), . . . , CNmodels
(g̃, xNmodels

)] ∈ RNDWI×Nmodels , with {xi} ∈ x being the non-
linear parameters corresponding to each model i. It can be noted that

f = φ(g̃, x)†E(g̃) (S21)

where φ† is the Moore-Penrose pseudo-inverse of φ. After the projection, the objective function takes the
following form:

argminx‖E(g̃)− φ(g̃, x)φ(g̃, x)†E(g̃)‖22. (S22)

Step 2 - Stochastic search for nonlinear parameters x: As we noted for l-BFGS-g, gradient-based
methods require a good starting point to obtain an appropriate solution for the parameters. MIX, instead,
uses stochastic optimization to overcome the need for an initial grid-search of the parameter space.

Step 3 - Constrained search for linear parameters f: Once an initial approximation of x∗ is known,
the third step is to obtain a constrained estimate of the linear parameters f such that they add up to one:

argminf‖E(g̃)− φ(g̃, x∗)f′‖22 s.t.
∑
i

fi = 1, f ≥ 0. (S23)

We implement this step using scipy’s Constrained Optimization BY Linear Approximation (COBYLA)
algorithm.

Step 4 - Non-linear least squares estimation: The last step is to refine the solution by minimizing the
standard objective function in Eq (S17) using the estimate of x∗ and f∗ as a starting point. For this, we
again use the l-BFGS-b algorithm.

3.2 MC-SH Optimization

MC-SH modeling must be optimized differently than MC and MC-SM models, because only the spherical
harmonics coefficients are estimated, with all other (non-linear) parameters fixed before any data fitting.
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The general equation for MC-SH modeling and optimization is given by

c∗(x) =argminc

∫ [
E(x,As)− ÊMC-SH(A, c|p̃)

]2
dA s.t. Fi(n; c) ≥ 0, (S24)

with ÊMC-SH(As, c|p̃) =

[
N∑
i=1

Fi(ci) ∗S2 CKi (As|p̃i)

]
(n). (S25)

In Dmipy, we implement two algorithms to can optimize MC-SH models. The first is the standard
Constrained Spherical Deconvolution (CSD) algorithm by Tournier et al. (2007). The second is a generalized
implementation of the multi-tissue CSD (MT-CSD) algorithm by Jeurissen et al. (2014).

3.2.1 CSD implementation by Tournier07

The classic Constrained Spherical Deconvolution (CSD) algorithm by Tournier et al. (2007) does not
implement a hard constraint on a negative FOD, but instead penalizes negative values with a regularization
matrix. Formally, their optimization is given by

c∗ = argminc‖y−MMSc‖2 + λ|Lc‖2 (S26)

where L is a projection of c to the sphere like Φc, but the matrix Φ is then adapted such that only lines
are non-zero that project to a negative FOD value (or smaller than some threshold value). The minimum
solution to this equation is simply

c∗i = (MTM + λLTL)MTy, (S27)

where at each iteration the matrix L is updated with the previous solution for c, until the solution no
longer moves. The initial condition for c0 is given by the non-constrained spherical deconvolution of order
lmax = 4.

This implementation is not compatible for multiple compartments, but is entirely implemented using
Numpy, meaning it’s very fast. When only fitting a single compartments (or multiple compartments whose
volume fractions are fixed), use this optimizer to solve MC-SH models.

3.2.2 MT-CSD implementation by Jeurissen14

The Multi-Tissue CSD implementation by Jeurissen et al. (2014) is exactly the equation in Eq. (S11).
The problem can be directly given as input to the CVXPY optimization framework, which then returns our
multi-compartment SH coeffients.

This optimizer can only be used when the model has at most 1 anisotropic convolution kernel. If multiple
anisotropic kernels are given, the solution is very ill-posed as the two FOD distributions are too general.

4 ADDITIONAL MULTI-COMPARTMENT MODEL IMPLEMENTATIONS

Lastly, we have some extra MC-model implementations that were not demonstrated in the main paper, but
we can easily constuct. The references for these models here are given in Table S3.
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Table S3. Overview and composition of implemented MC-models and the number of lines that is needed to implement them from scratch using Dmipy, along
with their primary reference. The MC-models above the midline are presented in the results section of this work, while the implementations of those below the
midline are provided in the Supplementary Material.

Model Acronym Model Composition # of lines Primary References

ActiveAx (Snippet 1) G1+G2+S1+C4 13 (Alexander et al., 2010)
VERDICT (Snippet 2) S4+G1+C1 8 (Panagiotaki et al., 2014)
SMT (Snippet 3) G2 5 (Kaden et al., 2015)
SMT-NODDI (Snippet 4) G1+SD3*(C1+G2) 21 (Cabeen et al., 2019)
CSD (Snippet 5) TR2 4 (Tournier et al., 2007)

4.1 ActiveAx

Proposed by Alexander et al. (2010), the ActiveAx model models the generalized white matter
composition as a combination of a parallel bundle consisting of a Cylinder and Zeppelin with tortuosity
constraint, a non-diffusing Dot compartment and a Ball for CSF contributions. Formally, the model is given
by

EActiveAx = fCSF

Ball︷ ︸︸ ︷
G1(·|λiso)︸ ︷︷ ︸
CSF

+ ftrap ×
Dot︷︸︸︷
S1︸ ︷︷ ︸

Trapped Water

+ fh

Zeppelin︷ ︸︸ ︷
G2(µ|λ‖, λtort

⊥ )︸ ︷︷ ︸
Hindered Extra-Axonal

+ fr

Cylinder︷ ︸︸ ︷
C4(µ〈D〉|λ‖, λ⊥)︸ ︷︷ ︸

Intra-Axonal

, (S28)

where on practice only the axon diameter 〈D〉, bundle orientation µ, and the volume fractions are estimated.
Dmipy’s implementation of ActiveAx is given in Snippet 1.

1 from dmipy.core import modeling_framework

2 from dmipy.distributions import distribute_models

3 from dmipy.signal_models import gaussian_models, cylinder_models, sphere_models

4 ball = gaussian_models.G1Ball()

5 cylinder = cylinder_models.C4CylinderGaussianPhaseApproximation()

6 dot = sphere_models.S1Dot()

7 zeppelin = gaussian_models.G2Zeppelin()

8 bundle = distribute_models.BundleModel([cylinder,zeppelin])

9 bundle.set_equal_parameter('C4CylinderGaussianPhaseApproximation_1_lambda_par', 'G2Zeppelin_1_lambda_par')

10 bundle.set_tortuous_parameter(

11 'G2Zeppelin_1_lambda_perp', 'C4CylinderGaussianPhaseApproximation_1_lambda_par', 'partial_volume_0')

12 bundle.set_fixed_parameter('C4CylinderGaussianPhaseApproximation_1_lambda_par', 1.7e-9)

13 activax = modeling_framework.MultiCompartmentModel([ball, dot, bundle])

14 activax.set_fixed_parameter('G1Ball_1_lambda_iso', 3e-9)

Snippet 1: Dmipy Implementation of ActiveAx model in 13 lines.

Frontiers 9



Supplementary Material

4.2 VERDICT

Panagiotaki et al. (2014) proposed a multi-compartment model called VERDICT to characterize the
composition of tumorous tissues. VERDICT models the diffusion in tumor cells, the extra-cellular space
and surrounding bloodvessels as a restricted Sphere, an isotropic Gaussian Ball and a Stick compartment,
respectively. VERDICT’s design is as follows:

EVERDICT = fTumor

Sphere︷ ︸︸ ︷
S4(D|λintra)︸ ︷︷ ︸

Tumor Cells

+ fextra

Ball︷ ︸︸ ︷
G1(·|λiso)︸ ︷︷ ︸

Hindered Extra-Cellular

+ fblood

Stick︷ ︸︸ ︷
C1(λ‖,µ)︸ ︷︷ ︸

Vascular

(S29)

where D is the sphere’s diameter. VERDICT uses the Gaussian Phase approximation to model the
sphere (Balinov et al., 1993), which accounts to changes in gradient pulse duration δ and separation ∆.
Furthermore, some particular parameter constraints are imposed:

• The intra-cellular (intra-spherical) diffusivity is fixed to 0.9×10−9 m2/s,
• The extra-cellular Gaussian diffusivity is also fixed to 0.9×10−9 m2/s,
• The optimization range for λ‖ of the Vascular Stick is set between (3.05-10)×10−9 m2/s.

We provide the Dmipy implementation of the VERDICT model in Snippet 2.

1 from dmipy.signal_models import sphere_models, cylinder_models, gaussian_models

2 from dmipy.core.modeling_framework import MultiCompartmentModel

3 sphere = sphere_models.S4SphereGaussianPhaseApproximation(diffusion_constant=0.9e-9)

4 ball = gaussian_models.G1Ball()

5 stick = cylinder_models.C1Stick()

6 verdict_mod = MultiCompartmentModel(models=[sphere, ball, stick])

7 verdict_mod.set_fixed_parameter('G1Ball_1_lambda_iso', 0.9e-9)

8 verdict_mod.set_parameter_optimization_bounds('C1Stick_1_lambda_par', [3.05e-9, 10e-9])

Snippet 2: VERDICT model in 8 lines of code.

4.3 SMT

The first spherical mean technique (SMT) model was proposed by Kaden et al. (2015). It is a simple
MC-model with just a single Zeppelin, fitted in an MC-SM model. In this sense, it only first two parameters,
λ‖ and λ⊥, with λ⊥ ≤ λ‖. The code to implement the SMT model is given in Snippet 3.

4.4 SMT-NODDI

In recent works, Cabeen et al. (2019) proposed to speed up the NODDI estimation time by splitting the
optimization in two steps. In the first step, the NODDI model is fitted in the spherical mean sense, meaning
only the volume fractions are estimated, and the orientation and dispersion influence should be obviated
in this setting. In the second step, the volume fractions are fixed, and only the orientation and dispersion
parameters are estimated.
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1 from dmipy.signal_models import gaussian_models

2 from dmipy.core.modeling_framework import MultiCompartmentSphericalMeanModel

3 zeppelin = gaussian_models.G2Zeppelin()

4 smt_mod = MultiCompartmentSphericalMeanModel(models=[zeppelin])

5 smt_mod.set_fractional_parameter('G2Zeppelin_1_lambda_perp', 'G2Zeppelin_1_lambda_par')

Snippet 3: SMT model in 5 lines of code.

It should be noted that the SMT-NODDI model is not equivalent to the standard NODDI model. The
volume fractions will have different values, especially in crossing areas where the standard NODDI model
would suffer due to fitting multiple bundles with a single bundle, but the SMT-NODDI model would be
capable of handeling this in at least the first step. The implementation of the NODDI-SMT model is given
in Snippet 4.

1 from dmipy.signal_models import cylinder_models, gaussian_models

2 from dmipy.distributions.distribute_models import BundleModel, SD1WatsonDistributed

3 from dmipy.core import modeling_framework

4 # setup base CompartmentModels

5 stick = cylinder_models.C1Stick()

6 zeppelin = gaussian_models.G2Zeppelin()

7 ball = gaussian_models.G1Ball()

8 # setup distributed models and apply same parameter links

9 bundle = BundleModel([stick, zeppelin])

10 watson_bundle = SD1WatsonDistributed([stick, zeppelin])

11 for dist_mod in [bundle, watson_bundle]:

12 dist_mod.set_tortuous_parameter('G2Zeppelin_1_lambda_perp', 'C1Stick_1_lambda_par','partial_volume_0')

13 dist_mod.set_equal_parameter('G2Zeppelin_1_lambda_par', 'C1Stick_1_lambda_par')

14 dist_mod.set_fixed_parameter('G2Zeppelin_1_lambda_par', 1.7e-9)

15 # setup mc-models and apply same fixed isotropic diffusivity

16 smt_noddi_mod = modeling_framework.MultiCompartmentSphericalMeanModel(models=[bundle, ball])

17 noddi_mod = modeling_framework.MultiCompartmentModel(models=[watson_bundle, ball])

18 for mc_mod in [smt_noddi_mod, noddi_mod]:

19 mc_mod.set_fixed_parameter('G1Ball_1_lambda_iso', 3e-9)

20 # Step 1: fit SMT-NODDI model

21 smt_noddi_fit = smt_noddi_mod.fit(scheme, data)

22 # Step 2: fix volume fractions of SMT-NODDI in standard NODDI, and fit remaining NODDI parameters

23 noddi_mod.set_fixed_parameter('SD1WatsonDistributed_1_partial_volume_0',

24 smt_noddi_fit.fitted_parameters['BundleModel_1_partial_volume_0'])

25 noddi_mod.set_fixed_parameter('partial_volume_0',

26 smt_noddi_fit.fitted_parameters['partial_volume_0'])

27 noddi_mod.set_fixed_parameter('partial_volume_1',

28 smt_noddi_fit.fitted_parameters['partial_volume_1'])

29 noddi_fit_2step = noddi_mod.fit(scheme, data)

Snippet 4: 2-step SMT-NODDI implementation in 21 lines (excluding comments).
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4.5 CSD

The original CSD model only contains a single anisotropic tissue response model that is directly estimated
from the data. The original work obtained the response model by means of an FA mask on the data (Tournier
et al., 2007). In this example, we obtain all three tissue responses (WM, GM, CSF) using the heuristic
algorithm by Dhollander et al. (2016), and create the basic CSD model by just taking the WM response in
Snippet 5.

1 from dmipy.core.modeling_framework import MultiCompartmentSphericalHarmonicsModel

2 from dmipy.tissue_response.three_tissue_response import three_tissue_response_dhollander16

3 wm, gm, csf, selection_map = three_tissue_response_dhollander16(

4 scheme_hcp, data_hcp, wm_algorithm='tournier13',

5 wm_N_candidate_voxels=150, gm_perc=0.2, csf_perc=0.4)

6 mt_csd_mod = MultiCompartmentSphericalHarmonicsModel(models=[wm])

Snippet 5: CSD model in 4 lines of code.
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