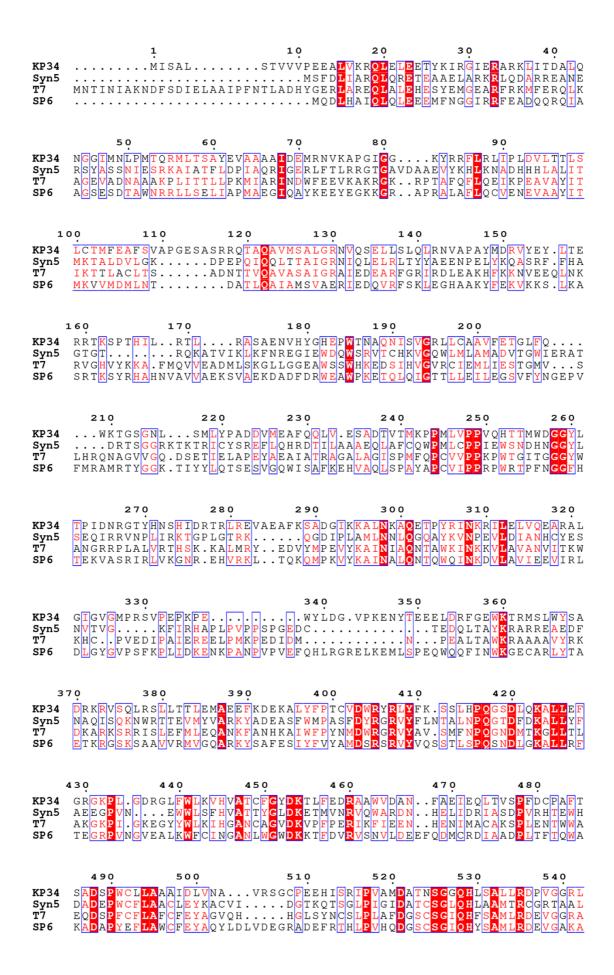
Supplementary Materials

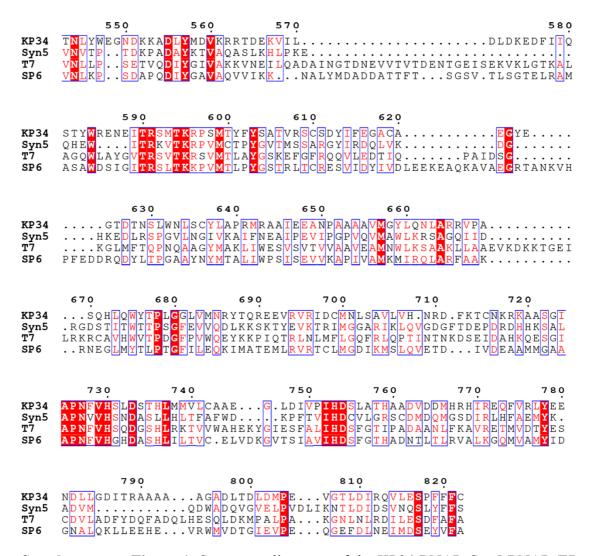
Supplementary Table 1. Oligonucleotide primers used for cloning and mutagenesis in this work.

Genes	Primers*	Sequences (5'-3')	
KP34 RNAP	F	ACTGGCTAGCATGATTAGCGCCCTAAGTAC	
		GGTAGTACC	
	R	ACTGGCGGCCGCTTAGCAGAAGAAGAACG	
		GGGATTCTAGCACTTG	
T7 RNAP	F	TCACCATCACCATATGAACACGATT	
		AACATCGCTAAGA	
	R	AGTCCAAGCTCAGCTAATTTTACGCGAACG	
		GAAGTCCGACTCT	
pQE-82L	F	AATTAGCTGAGCTTGGACTCCTGTTGATAG	
	R	ATGGTGATGGTGAGATCCTCTCAT	
KP34-Y601F	F	GTATGACCTTCTTCTACAGCGCCACGG	
RNAP	R	CTGTAGAAGAAGGTCATACTGGGGCGC	
KP34-F602Y	F	TGACCTACTACAGCGCCACGGTGC	
RNAP	R	GCGCTGTAGTAGTAGGTCATACTGGGG	
KP34-Y603F	F	CCTACTTCTTCAGCGCCACGGTGCGTA	
RNAP	R	GTGGCGCTGAAGAAGTAGGTCATACTG	

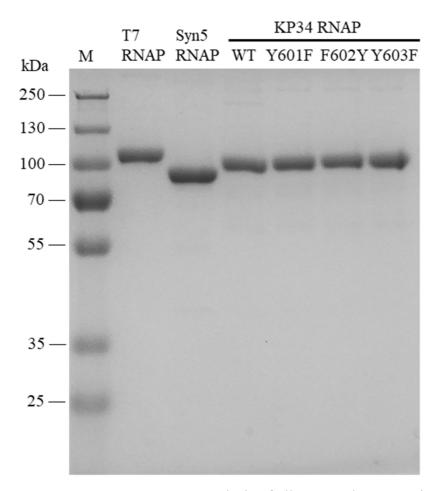
Introduced restriction enzyme sites are indicated in bold.

^{*}F refers to forward primer and R refers to reverse primer.

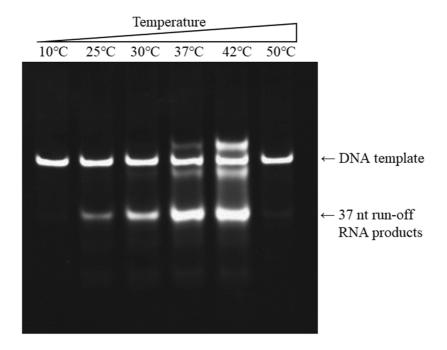

Supplementary Table 2. DNA templates used for *in vitro* transcription assays in this work.

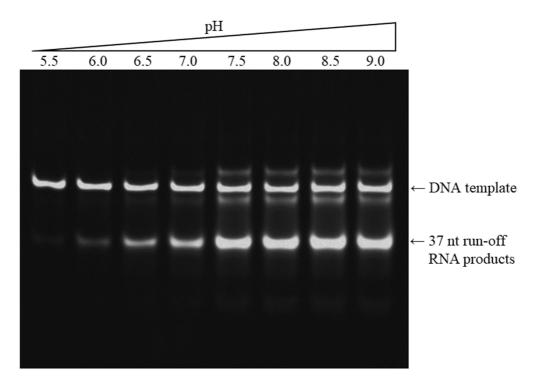

DNA templates	Oligos*	Sequences (5'-3')	Usage
Template 1	F	GGTTCCACGGTAGTGC AGTGGG	Figure 2A
	R	CACTACATCATCGCCCT	Primers to amplify
	10	CATAG	PCR fragments
Template 2	F	ACTGGCTAGCATGATT	Figure 2A
		AGCGCCCTAAGTACGG TAGTAGTACC	Primers to amplify
	R	GACGCCTGCGTCCTGG	PCR fragments
	K	ТССТТС	T CIT Huginoms
T7-37	F	TAATACGACTCACTAT	Figure 2C
	_	A GGAGAACCTTAAGGT	Annealed
		TTAACTTTAAGACCCTT AAGTG	oligonucleotides
	R	CACTTAAGGGTCTTAA	as template
	K	AGTTAAACCTTAAGGT	
		TCTCCTATAGTGAGTCG	
		TATT	
	F	TTAATGTTACAGGAGT	Figure 2C
KP34-S1-37		AGGAGAACCTTAAGGT TTAACTTTAAGACCCTT	Annealed
		AAGTG	oligonucleotides
	R	CACTTAAGGGTCTTAA	as template
		AGTTAAACCTTAAGGT	
		TCTCCTACTCCTGTAAC	
		ATTAA	
KP34-S2-37	F	TTGATGTTACAGGAGT AGGAGAACCTTAAGGT	Figure 2C
		TTAACTTTAAGACCCTT	Annealed
		AAGTG	oligonucleotides
	R	CACTTAAGGGTCTTAA	as template
	IC.	AGTTAAACCTTAAGGT	
		TCTCCTACTCCTGTAAC	
		ATCAA	
	F	TACTTTGGACATCCGT	Figure 2C
KP34-W-37		CAAGTGGAGAACCTTA	Annealed
		AGGTTTAACTTTAAGA CCCTTAAGTG	oligonucleotides
		CCCTTAAUTU	

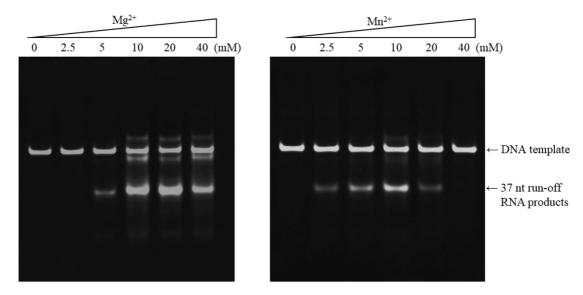
	T)	CACTTAAGGGTCTTAA	as template
	R	AGTTAAACCTTAAGGT	as template
		TCTCCACTTGACGGATG	
		TCCAAAGTA	
	F	TAATACGACTCACTAT	
T7-50		AGCAAAGCTTCGGCTG	Figure 3A
		GTGCAGTGGCCTCATA	· ·
		AGAGGCGGCCCTAAC	Annealed
		AGG	oligonucleotides
	R	CCTGTTAGGGGCCGCC	as template
		TCTTATGAGGCCACTGC	
		ACCAGCCGAAGCTTTG	
		CTATAGTGAGTCGTATT	
		A	
	F	TTAATGTTACAGGAGT	
KP34-50		AGCAAAGCTTCGGCTG	
		<u>GTGCAGTGGCCTCATA</u>	Figure 3A
		<u>AGAGGCGGCCCCTAAC</u>	Annealed
		<u>AGG</u>	oligonucleotides
	R	CCTGTTAGGGGCCGCC	as template
	10	TCTTATGAGGCCACTGC	
		ACCAGCCGAAGCTTTG	
		CTACTCCTGTAACATTA	
		A	
	F	TATTGGGCACCCGTA	
	1	A GCAAAGCTTCGGCTG	
Syn5-50		GTGCAGTGGCCTCATA	Figure 3A
		AGAGGCGGCCCTAAC	Annealed
		AGG	oligonucleotides
	R	CCTGTTAGGGGCCGCC	as template
	K	TCTTATGAGGCCACTGC	1
		ACCAGCCGAAGCTTTG	
		CTTACGGGTGCCCAAT	
		A	
	Г	CATATGCGGTGTGAAA	T' 44
EGFP sgRNA	F	TACCGCACAGATGC	Figure 4A
	_	AAAAAAAGCACCGACT	Primers to amplify
	R	CGGTGCCACTTTTCAA	
			PCR fragments
		G	

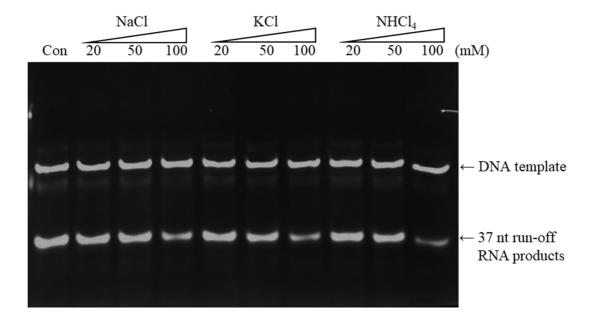

The promoter sequences are indicted in bold and the nucleotides corresponding to the run-off RNA sequences are underlined.

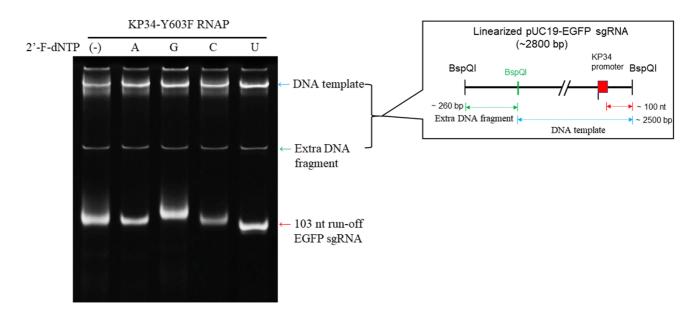
^{*}F indicates forward primers (for PCR fragments) or sense strands (for annealed oligos) while R indicates reverse primers (for PCR fragments) or antisense strands (for annealed oligos).




Supplementary Figure 1. Sequence alignment of the KP34 RNAP, Syn5 RNAP, T7 RNAP and SP6 RNAP was performed using Clustal Omega. The alignment was processed for publication using the ESPRIPT server v 3.0. The amino acid sequence of KP34 RNAP shares a similarity of 24.39%, 27.28% and 25.54% with Syn5, T7 and SP6 RNAP, respectively.


Supplementary Figure 2. SDS-PAGE analysis of all RNA polymerases in this work. All enzymes are N-terminal His-tagged and purified through Ni-NTA-agarose column and gel filtration column. Proteins were stained with Coomassie Blue. M: molecular mass marker.


Supplementary Figure 3. Effect of reaction temperature on KP34 RNAP activity. The transcription assays of the KP34 RNAP (1 μ M) were performed at various temperatures in the presence of 40 mM Tris-HCl (pH 8.0), 20 mM MgCl₂, 2 mM spermidine, 20 mM DTT, 4 mM of each of the 4 NTPs and 2 μ M DNA template, 40 U/ μ l RNaseOUTTM Recombinant Ribonuclease Inhibitor, 0.04 U/ μ l *E. coli* inorganic pyrophosphatase, for 1 h. DNA template and RNA products were separated on a 12% TBE native gel. Various temperatures for the reactions were shown at the top of the gel.


Supplementary Figure 4. Effect of pH on KP34 RNAP activity. The transcription assays of the KP34 RNAP (1 μ M) were performed using buffers with various pH at 37°C for 1 h in the presence of 20 mM MgCl₂, 2 mM spermidine, 20 mM DTT, 4 mM of each of the 4 NTPs and 2 μ M DNA template, 40 U/ μ l RNaseOUTTM Recombinant Ribonuclease Inhibitor, 0.04 U/ μ l *E. coli* inorganic pyrophosphatase. Three different buffers (all at 40 mM concentrations) were used to prepare different pHs: NaH₂PO₄-Na₂HPO₄(pH 5.5, pH 6.0, pH 6.5, pH 7.0), Tris-HCl (pH 7.5 and pH 8.0), and Glycine-NaOH (pH 8.5 and pH 9.0). DNA template and RNA products were separated on a 12% TBE native gel. Various pH conditions for the reactions were shown at the top of the gel.

Supplementary Figure 5. Effect of MgCl₂ and MnCl₂ on KP34 RNAP activity. The transcription assays of the KP34 RNAP (1 μ M) were performed with Mg²⁺/Mn²⁺ at 37°C for 1 h in the presence of 40 mM Tris-HCl (pH 8.0), 2 mM spermidine, 20 mM DTT, 4 mM of each of the 4 NTPs and 2 μ M DNA template, 40 U/ μ l RNaseOUTTM Recombinant Ribonuclease Inhibitor, 0.04 U/ μ l *E. coli* inorganic pyrophosphatase. DNA template and RNA products were separated on a 12% TBE native gel. Concentrations of Mg²⁺ and Mn²⁺ in the reactions were shown at the top of the gel.

Supplementary Figure 6. Effect of NaCl, KCl and NHCl₄ on KP34 RNAP activity. NaCl, KCl or NHCl₄ at various concentrations were added to the transcription assays contained 40 mM Tris-HCl (pH 8.0), 2 mM spermidine, 20 mM DTT, 20 mM MgCl₂, 4 mM of each of the 4 NTPs, 40 U/ μ l RNaseOUTTM Recombinant Ribonuclease Inhibitor, 0.04 U/ μ l *E. coli* inorganic pyrophosphatase, 2 μ M DNA template and 1 μ M KP34 RNAP. Reaction mixtures were incubated at 37°C for 1 h. DNA template and RNA products were separated on a 12% TBE native gel. Concentrations of NaCl, KCl and NHCl₄ in the reactions were shown at the top of the gel. Con: the reaction without salt.

Supplementary Figure 7. Incorporation of 2'-F-dNMPs into the 103 nt sgRNA transcript using KP34-Y603F RNAP. The position of the migration of the DNA template, an extra DNA fragment during template preparation, and the RNA products were marked on the right of the gel. In the reaction, none (-) or one of the four NTPs was replaced by its 2'-F-dNTP analog as indicated at the top of the gel. In the right panel box: schematic showing the preparation of transcription template by digestion of the plasmid using BspQI restriction enzyme.