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1 CONDITIONAL DOSE RESPONSE CURVES

A common approach for modeling monotonic dose-response curves f; with j € {1,2} is the Hill curve (Hill,
1910), also referred to as the sigmoid function. The Hill model is, due to its good fit to many sources of data,
the most widely applied model for fitting compound responses (Goutelle et al., 2008)). It has a sigmoidal
shape with little change for small doses but with a rapid decline in response once a certain threshold is met.
For even larger doses the effect asymptotes to a constant maximal effect. Two exemplary Hill curves are
depicted in Fig.[ST] There are several parameterizations of the Hill curve. We use the following throughout
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Figure S1. Dose-response curves (red and blue) as Hill curves (Eq. [ST)). For the exemplary responses of
0.3 and 0.9 the different doses x1 and x2 reaching that effect are shown (dashed lines). The dose-response
curves differ only in EC5p with e; = 2 and e = 1. Values of the other parameters are yg = 1, Yoo = 0 and
s = 2. To highlight the sigmoidal shape of a Hill curve in log-space, the logarithmic concentration space is
depicted.

this study to fit conditional responses:

F(@) = Yoo + —iﬂ‘(ij‘;, (S1)

where 1 is the response at zero dose and y~, the maximal response of the cells to the compound, e the dose
concentration reaching half of the maximal response and s the steepness of the curve. Eq.[S1|is equivalent
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to the parametrization used in the drc package (Ritz and Strebigl, 2016), the so-called four parameter
log-logistic model. By our definition of the Hill curve, a positive s leads to a descending Hill curve.

2 DATA CLEANING, FITTING OF HILL CURVE AND PARAMETER ESTIMATION
FOR IMPLICIT MODELS

First, we normalize all records by the measured response at zero dose concentration from both compounds,
yo. Second, we conduct an outlier analysis of the normalized responses by fitting a spline surface and
deleting outliers to discard them. Third, we then fit the conditional responses of the cleaned data to Hill
curves.

We fit a general additive model (GAM) to the normalized raw data using thin plate splines (Wood, 2006),
not transforming the doses in any way. The surfaces of those fitted thin plate splines span the checkerboards
of every record and data points with too large absolute residual values are rejected. For fitting the splines we
use method gam() of the mgcv-package (Wood, 2011), defining the smooth terms within the gam formulae
with the method s(). We set the dimension of the basis, that is used to represent the smooth term to £ = 30
fixed knots.

The threshold to reject data points is at five times the inter-quantile range of all residuals of a given record.
Every data point with an absolute residual above that threshold is discarded. For the Mathews Griner data,
this leads to 18 records out of the 466 (less than 4%) where a mean of 1.28 outliers were excluded per
record with an overall of 23 data points excluded, which is less than one percent of the overall data. A
maximum of 6 outliers was detected once. Similarly, we excluded on average 2.48 data points for the Cokol
data on 52 of the total 200 (< 25%) records with a maximum of 13 data points and an overall of 129 data
points excluded, which is about 1% of all data points.

To fit the two conditional responses of a record to two Hill functions of the form of Eq.[ST| we use the drc
package (Ritz et al., 2019). Unlike other synergy analyses such as (Yadav et al., [2015), the response at zero
concentration yo is not fixed to 1 but merely constrained to be the same for both response curves. The other
Hill parameters, 1, s and e are fitted for both compounds individually. In case the asymptote parameter
Yoo 18 below zero for any of the two Hill curves, the conditional response of that compound is refitted to a
two-parameter model with 1, set to zero and yg kept from the fitting of both compounds together. This is
the case for 43 records of the Mathews Griner dataset and 125 records of the Cokol dataset. We exclude
records for which any of the Hill curve parameters slope or EC50 are negative (s < 0, e < 0). This is the
case for 187 records for the Mathews Griner dataset (133 records with negative slope s, 88 records with
negative EC50 value e, out of which there are 34 records with negative slope and negative EC50 value),
which is roughly 40% of all records. More details follow below.

The fgp(x1,x2) model is an implicit model for the response y. Therefore, a root finder is used to

find a response §(*) given concentrations (:cgi), xé”) and parameters describing the Hill curves of the

conditional responses, © = {yo, Yo j, €, S; }, We used the standard implementation of a root finder in the
R stats package, uniroot() (R Core Team, 2016), which is based on the Brent-Dekker-van Wijngaarden
algorithm (Press et al., {1989, Chapter 9). As convergence criterion we used 1.22 x 10~* within a maximum
of 1000 iterations.
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2.1 Sensitivity of model performance to inter-quantile range

In a previous version of this article, we cleaned the data to three times the inter-quantile range instead of
five. With this smaller inter-quantile range we removed in the Mathews Griner dataset in total 199 data
points instead of 23, and in the Cokol dataset 623 instead of 129. The performance of the Mathews Griner
dataset for the lack-of-fit method slightly decreased, whereas the overall performance for the Cokol dataset
increased.
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Figure S2. Scatter plot of Kendall rank correlation coefficient for both datasets, Mathews Griner (left) and
Cokol (right), comparing the performance of the lack-of-fit method for different data-cleaning thresholds.
The Kendall rank correlation coefficient values resulting from the cleaned data with three times the inter-
quantile range are plotted on the z-axis and those from the data cleaned with a threshold of five times
inter-quantile range are plotted on the y-axis. Each model is depicted in a different colour. To guide the eye,
the diagonal is plotted.

As a note, approximately the same number of records were excluded for the analysis due to two issues:
1) negative slopes of at least one of the conditional dose response curves, or ii) the root-finder for the
fer (21, x2|a) model not converging (no convergence after 1000 iterations). These issues are independent
from data cleaning with three or five times the inter-quantile range (see Appendix [4] Table[S12]- Table[ST5).
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Figure S3. Scatter plot of ROC analysis for both datasets, Mathews Griner (left) and Cokol (right),
comparing the performance of the lack-of-fit method for different data-cleaning thresholds. The AUC
values resulting from the cleaned data with three times the inter-quantile range are plotted on the z-axis
and those from the data cleaned with a five times inter-quantile range are plotted on the y-axis. AUC values
from different models are shown in different colors. AUC values comparing the different categories are
depicted in different shapes, where the naming of the shape represents the category that is compared to the
remaining two. To guide the eye, the diagonal is plotted. The more a datapoint is above the diagonal, the
better the performance of the data cleaned with a threshold of five times the inter-quantile range, and vice
versa.

2.2 Handling records with negative slope or EC50 values

Roughly 40% (187) of the records of the Mathews Griner dataset were excluded in the study because of a
negative slope or EC50 parameter. This is due to a suboptimal choice of doses. We observed two types of
sub-optimality: first, the maximal dose can be too small to induce a significant change in response. Due to
the noise in measurements, negative slope and EC50 parameters are fitted. This is the case for 34 records.
A second type of sub-optimality is observed when the maximal effect is already reached for the second
dose (the first dose is always zero). This is the case for the remaining 153 records.

Although we could not fit two reasonable Hill curves to these records, we can still use both methods,
lack-of-fit and parametric, to quantify synergy. They both only require two mathematically well-defined
conditional response curves. Here, we define a conditional response for cases with negative slope or
negative EC50 parameter according to Table
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Table S1. Response curves for cases where the Hill model fit leads to negative slope or negative EC50
values.

With the above definition for conditional response curves, we investigated the 187 previously excluded
records in detail. We computed the lack-of-fit synergy values ~ for those 187 records and for the entire
dataset of 466 records. For two of these records, the fgr (x1, 2) model did not converge. The Kendall rank
correlation coefficient values are given in Appendix {4} Table The inclusion of those datasets results in
lower Kendall rank correlation coefficients relative to the original analysis. The coefficients decrease by
roughly 0.05 when averaged over all models.

3 ROC-ANALYSIS

In high-throughput synergy studies, one generally screens for promising candidates that exhibit a synergistic
or antagonistic effect. Those promising candidates are then investigated in more detail with genetic assays
and other techniques. To determine how well the underlying null reference models result in distinguishable
synergy scores, we conduct an ROC analysis (receiver operating characteristic), comparing the estimated
synergy scores with the class categorization that is given for both datasets. A standard ROC analysis
applies to binary classification, where cases are compared to controls. In this study, we have three classes:
synergistic, antagonistic and non-interactive. We therefore compare each class to the combination of
the other two, e.g. synergistic as cases versus the antagonistic and non-interactive combined as control.
Typically, in ROC analyses, the cases rank higher than the controls. When treating the class antagonistic
as case compared to the control synergistic and non-interactive we change all signs of the synergy scores.
Therefore, the ranking of synergy scores is reversed and antagonistic synergy scores rank higher. Problems
arise when comparing non-interactive cases to the control synergistic and antagonistic as their values
should lie between the two control classes. Therefore, the absolute value of the estimated synergy scores is
taken, which allows a ranking where the synergy scores of the non-interactive records should rank lower
than the other synergy scores. Additionally, we can again multiply all synergy scores with minus one to
revert the order of scores such that the cases rank higher.

The AUC values (area under the curve) are reported in Table [S4] - Table in Appendix [ For
completeness, and based on the critique of Saito and Rehmsmeier| (2015) to use PRC-AUC (precision/recall

area under the curve) values for imbalanced datasets, the PRC-AUC values are also computed and can be
found in Table [S§]- Table [ST1|in Appendix @}

Analogously to the previous section, we depict the AUC values for both datasets in scatter plots (Fig. [S4)
with AUC values based on the parametric approach depicted on the x-axis and those based on the lack-
of-fit approach on the y-axis. The underlying null reference models are shown by color. The different
comparisons, such as synergistic versus non-interactive and antagonistic, are depicted by shape of the plot
symbol.

From Fig.[S4] the dominance of the lack-of-fit approach over the parametric one is as apparent for the
Mathews Griner dataset as from Fig. [2| With regard to the comparison of the different cases, visualized in
shape, the AUC values from the comparison of the synergistic cases to the non-interactive and antagonistic
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Figure S4. Scatter plot of ROC values for both datasets, Mathews Griner (left) and Cokol (right). The
ROC values resulting from the parametric approach are plotted on the x-axis and those from the lack-of-fit
approache are plotted on the y-axis. Each model is depicted in a different color. The three different
comparisons, of one case versus the remaining two, are depicted in different shapes. To guide the eye, the
diagonal is plotted. If a data point is above the diagonal, the ROC value from the lack-of-fit method is
higher than that from the parametric method, and vice versa. Except for the non-interactive comparison of
the Bliss Independence model, the synergy scores v from the lack-of-fit method always result in higher
ROC values than those computed based on the synergy scores v from the parametric method.

controls, score the highest values around 0.9. The comparison of the non-interactive cases to the interactive
ones score the lowest.

As the overall highest AUC scores result from the lack-of-fit method, we have a closer look at those
for both datasets (Table [S5] and Table [S7]in Appendix ). For the antagonistic case, the values range
around 0.80 for the Mathews Griner dataset and around 0.85 for the Cokol dataset. AUC values of the
non-interactive case range around (.75 for both datasets. The AUC values for the synergistic case for both
datasets range around a value of 0.90 with one outlier of 0.75 for the Bliss Independence model on the
Mathews Griner dataset.

Overall, the lack-of-fit outperforms the parametric method on the Mathews Griner dataset. For the
lack-of-fit method, both the fiarge—small (21, x2) and Explicit Mean Equation perform best on the Mathews
Griner dataset for synergistic cases, and a clear dominance of fiarge —ssmall (x1,x2) over the Explicit Mean
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Equation for antagonistic and non-interactive cases. On the second dataset, the Cokol dataset, Explicit
Mean Equation performs overall best for both methods.

We attribute the differences in performances of methods and models on the two datasets to the differences
in the experimental design for these datasets. For the Cokol dataset, all compounds were applied up to their
maximal effect dose. In the Mathews Griner dataset, all compounds were applied with the same fixed dose
range.
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4 SUPPLEMENTARY TABLES

model lack-of-fit parametric
fa1 (21, 72) 0.52 0.23
flarge—>small (1'17 1’2) 0.54 0.32
fsmall—>large (3717 -732> 0.48 0.19
Jmean (21, 22) 0.53 0.10
Jeeary (71, 72) 0.47 0.30
Jotiss (21, 22) 0.36 0.22

Table S2. Kendall rank correlation coefficient of Mathews Griner data set.

model lack-of-fit parametric
Jar (1, 22) 0.62 0.12
flarge%small (ml, x2) 0.61 0.50
fsmall%large (3717 372) 0.50 0.57
Jmean (xla $2) 0.67 0.64
fgeary (Ilu x2) 0.56 0.58
fbliss (1717 .’Ez) 0.56 0.16

Table S3. Kendall rank correlation coefficient of Cokol data set.

synergistic non-interactive antagonistic

fGI (xl, xg) 0.67 0.63 0.62

Ji large—small (37 1,T 2) 0.73 0.68 0.72
fsmall%large (Ih xZ) 0.68 0.53 0.53
fmean (xla 2) 0.62 0.68 0.46
Jocary (1, 22) 0.70 0.57 0.60

fotiss (1, T2) 0.66 0.45 0.62

Table S4. AUC analysis of parametric method applied to Mathews Griner dataset.

synergistic non-interactive antagonistic

far (1, 22) 0.88 0.77 0.81
Jlarge—ssmall (1, T2) 0.89 0.78 0.84
fsmalllarge (71, T2) 0.86 0.68 0.78

fmean («Th 2) 0.89 0.75 0.82
Facary (71, T2) 0.85 0.69 0.78
Foliss (1, T2) 0.75 0.60 0.76

Table S5. AUC analysis on lack-of-fit method applied to Mathews Griner dataset.
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synergistic non-interactive antagonistic

fGI (xl, 1'2) 0.62 0.62 0.55
flarge—)small (Ila 2) 0.80 0.64 0.84
fsmall%large (1317 x2) 0.86 0.64 0.89

fmean (5’717 2) 0.89 0.74 0.93
Joeary (1, 2) 0.80 0.74 0.89
fbhss (Ila x2) 0.62 0.55 0.59

Table S6. AUC analysis on parametric method applied to Cokol dataset.

synergistic non-interactive antagonistic

far (91;1, :L’z) 0.93 0.78 0.88
Jtarge—ssmall (1, T2) 0.94 0.63 0.86
fsmall%large (xla l’g) 0.83 0.66 0.83

fmean (xla 2) 0.95 0.80 0.91
Joeary (21, 22) 0.88 0.71 0.86
fotiss (1, 72) 0.86 0.43 0.87

Table S7. AUC analysis on lack-of-fit method applied to Cokol dataset.

synergistic non-interactive antagonistic

far (]71, xg) 0.39 0.69 0.35
flarge—>small (xla 2) 0.62 0.73 0.32
fsrnall—)large (mla 2) 0.52 0.58 0.13

fmean (71, 72) 0.56 0.74 0.18
Joeary (21, 22) 0.61 0.61 0.15
fotiss (€1, 72) 0.39 0.55 0.17

Table S8. PRC-AUC analysis on parametric method applied to Mathews Griner dataset.

synergistic non-interactive antagonistic

far (Il, xg) 0.78 0.75 0.48
flarge—)small (xla 2) 0.80 0.74 0.55
fsmall—)large (xla 2) 0.72 0.69 0.33

fmean (Il, 2) 0.78 0.76 0.42
Joeary (21, 22) 0.71 0.70 0.35
Jotiss (21, 2) 0.52 0.64 0.39

Table S9. PRC-AUC analysis on lack-of-fit method applied to Mathews Griner dataset.

synergistic non-interactive antagonistic

Tor (1, 2) 0.30 0.57 0.51
flarge—)small ('Tla x?) 0.56 0.56 0.65
fsmall—)large (371; x?) 0.62 0.52 0.83

Frmean (T1, 72) 071 0.55 0.89
fgeary (]31, :L‘g) 0.60 0.58 0.82
fbliss (]71, xg) 0.30 0.45 0.50

Table S10. PRC-AUC analysis on parametric method applied to Cokol dataset.

Frontiers



Frontiers Supplementary Material

synergistic non-interactive antagonistic

for (z1, 22) 0.84 0.65 0.83
flarge—>small ($17 2) 0.87 0.46 0.72
fsmall%large (Ilv x?) 0.63 0.56 0.72

fmean (xla 2) 0.87 0.66 0.86
fgeary (171, :L’Q) 0.75 0.60 0.77
fbhss (1717 xZ) 0.76 0.35 0.70

Table S11. PRC-AUC analysis on lack-of-fit method applied to Cokol dataset.

synergistic antagonistic non-interactive total

parametric 19 15 48 82
lack-of-fit 34 59 93 186
both 19 16 49 84

Table S12. # of excluded records from parametric and lack-of-fit method applied to the Mathews Griner
dataset with a threshold of three times the inter-quantile range.

synergistic antagonistic non-interactive total

parametric 21 16 49 86
lack-of-fit 36 38 91 185
both 21 16 49 86

Table S13. # of excluded records from the parametric and lack-of-fit method applied to the Mathews
Griner dataset with cleaned data of a threshold of five times the inter-quantile range.

synergistic antagonistic non-interactive total

parametric 6 4 6 16
lack-of-fit 7 5 7/ 19
both 6 4 6 16

Table S14. # of excluded records from parametric and lack-of-fit method applied to the Cokol dataset with
cleaned data of a threshold of three times the inter-quantile range.

synergistic antagonistic non-interactive total

parametric 3 2 4 9
lack-of-fit 3 3 4 10
both 3 2 4 9

Table S15. # of excluded records from parametric and lack-of-fit method applied to Cokol dataset with
cleaned data of a threshold of five times the inter-quantile range.

subset of entire set of original analysis on

model 185 records 464 records 279 records
fGI (5(31, Iz) 0.37 0.47 0.52
f]argeésmall (ml, $2) 0.34 0.43 0.54
Jsmall—slarge (21, x2) 0.42 0.46 0.48
fmean (21, 22) 0.37 0.43 0.53
feeary (21, x2) 0.35 0.39 0.47
Joliss (1, 22) 0.27 0.34 0.36

Table S16. Kendall rank correlation coefficients with recomputed conditional response curves according
to Table[ST|on 185 records with negative slope or EC50 value (left) and on entire dataset with 464 records
(right).
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5 SUPPLEMENTARY FIGURES
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Figure S5. Description of the analysis steps of the lack-of-fit method for the compound pair FEN and
DYC from the Cokol dataset. This compound pair is categorized as antagonistic according to (Cokol et al.|
2011). The raw response data of the record is depicted in (B). The response data normalized by the read at
zero dose concentration (lower left). In (B) the degree of relative cell growth is colored from high to low
values in red to blue.

Step 1: compute Hill curves for conditional responses: Based on the raw reads of the single dose responses
(lower and left outer edges) fit a Hill curve to the conditional responses. The fitted Hill curves shown in
(A) and (D) with original raw data shown as points.

Step 2: compute expected non-interactive response for all six models: not shown.

Step 3: compute difference between measured data (C) and expected data from all six null reference models:
shown in (C). The direction of difference is shown by color (red for negative and blue for positive, green
for zero). The larger the degree of difference, the larger the bullet, and vice versa.

Step 4: compute integral v over the differences: Over all those bullets, we then compute the integral, which
gives the synergy score . For every model, the synergy score « is depicted in the title of each matrix in

©).
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Figure S6. Raw responses (left) and expected responses from the Explicit Mean Equation model (right) of
the four records from the Cokol dataset, for which the General Isobole Equation and Explicit Mean Equation
gave synergy scores of opposite sign to the orignal categorization. More details on some parameters of the
Hill curves can be found in Fig. [6]
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