Model Capabilities Evaluation

we evaluated metabolic capabilities of the reconstructed network were calculated through various astrocytic metabolic tasks. This metabolic task has important physiological implications. We tested the flux through the different pathways of the metabolic astrocytic network and captured metabolic scenarios developed in astrocytes in different scenarios. The measurement of flux change for each reaction between metabolic scenarios was calculated with the fluxDifferencesfunction

Metabolic	Reasoning	Changes in Metabolic Fluxes	Bibliographic
Glutamate uptake	Astrocyte has a main role in glutamate detoxification	Glutamate-glutamine cycle	(Verkhratsky, Nedergaard, &
Glutamine Release	of the extracellular space Export of glutamine from astrocytes, and the uptake of glutamine by neurons, are essential steps in neurotransmission.	Glutamate-glutamine cycle	(Griffin et al., 2003)
Maximization ATP Production	astrocyte metabolism its highly dependent on ATP derived from energetic pathways.	Glycolysis, TCA, oxidative phosphorylation, PPP, amino acids, glutamate, glycine, cysteine and glutamine, glycine, serine-D, reduced glutathione, lactate, and ATP	(Aschner, 2000; Bélanger, Allaman, & Magistretti, 2011; Occhipinti, Somersalo, & Calvetti, 2009)
Minimization ATP Production	To assess the main energetic pathways and the alternative sources of energy that the model would use.	Glycolysis	(Aschner, 2000; Bélanger et al., 2011; Occhipinti et al., 2009)
Blocked Reactions	we set as objective function each one of the reactions (one by time) in the model and identifies the reactions without flux under all scenarios.	Whole model	(Gelius-Dietrich, Desouki, Fritzemeier, & Lercher, 2013)
Energetic pathways	To assess flux and energy production through the all energetic pathways	Glycolysis, TCA, oxidative phosphorylation.	(Kreft, Bak, Waagepetersen, & Schousboe, 2012)
Glycogenesis	Glycogen is found principally in astrocytes.	Glycogenesis- glucose uptake	(Gruetter; Hertz, Peng, & Dienel, 2007)

Maximization	Glycolysis is the main	Anaerobic glycolysis, TCA,	(Zwingmann &
glucose	energetic substrate.	oxidative phosphorylation.	Leibfritz)
uptake	Astrocytes have a glucose-	Astrocytes activated 52 % of	
	based metabolism.	model reactions	
Glucose	To assess the model	TCA, oxidative and	(Zwingmann &
inhibition	behavior with energic	phosphorylation inactive.	Leibfritz)
	depletion		
Oxygen	To assess the model	TCA, oxidative and	(Zwingmann &
inhibition	behavior with energic	phosphorylation inactive.	Leibfritz)
	depletion		
NADPH	NADPH provides the	NADPH producing reaction	(Abramov et al.,
	reducing equivalents.	_	2005)