
   

Appendix 

A stochastic game is defined in terms of payoff and transition probability matrices in each of n states. 
For 2 players and 2 actions the payoffs and transition probabilities are expressed as follows: 

𝑅"(𝑠) = [𝑟"(𝑠, 𝑎+, 𝑎,)]./0+,	.20+	
,,,  (4a) 

which is shorthand for   

𝑅"(𝑠) = 3𝑟
"(𝑠, 𝑎+ = 1, 𝑎, = 1), 𝑟"(𝑠, 𝑎+ = 1, 𝑎, = 2)
𝑟"(𝑠, 𝑎+ = 2, 𝑎, = 1), 𝑟"(𝑠, 𝑎+ = 2, 𝑎, = 2)

6 (4b) 

Thus, 𝑅"(𝑠) is the k-th player’s immediate reward matrix in state s, given action 𝑎+ by player 1 and 
action 𝑎, by player 2. The actions 𝑎+ and 𝑎, take values 1 or 2 to indicate whether the player plays 
the first or second action. The expression 𝑝(𝑠8|𝑠, 𝑎+, 𝑎,) gives the probability of going from state s to 
𝑠8 given action 𝑎+ by player 1 and action 𝑎, by player 2. The actions played by each player in each 
state are expressed mathematically in terms of the strategy vector 𝒇 for player 1 and and 𝒈 for player 
2. It is convenient to write 𝒇(𝑠) as a row vector 𝒇(𝑠) = <𝑓(𝑠, 𝑎+ = 1), 𝑓(𝑠, 𝑎+ = 2)> with elements 
giving the probability of each action in state 𝑠, and 𝒈(𝑠) as a column vector 

𝒈(𝑠) = ?𝑔
(𝑠, 𝑎, = 1)
𝑔(𝑠, 𝑎, = 2)

A (5) 

with elements giving the probability of each action in state s.  

1.1.1 Transition matrix and dynamic behavior.  

The strategy vectors 𝒇 and 𝒈 determine the dynamics of the system in terms of the stochastic 

transitions between states as follows: given these strategies the probability 𝑝 B𝑠8C𝑠, 𝒇, 𝒈D of 
transitioning from state s to state 𝑠8 is given by the sum 

𝑝 B𝑠8C𝑠, 𝒇, 𝒈D = ∑ 𝑝(𝑠8|𝑠, 𝑎+, 𝑎,)𝑓(𝑠, 𝑎+)𝑔(𝑠, 𝑎,),,,
./0+,	.20+	   (6a) 

where 𝑓(𝑠, 𝑎+) is the probability of action 𝑎+ being played by player 1 in state s and 𝑔(𝑠, 𝑎,) is the 
probability of action 𝑎, being played by player 2 in state s. This expression gives one element of an n 
by n stochastic transition matrix 𝑃(𝒇, 𝒈) for which the element in row s and column 𝑠8	is the 
probability of transitioning from state s to state 𝑠8, i.e. 

𝑃(𝒇, 𝒈)=	 G𝑝 B𝑠8C𝑠, 𝒇, 𝒈DH
I0+,IJ0+	

K,K
  (6b) 

with n the number of states. To summarise, for any strategy vectors 𝒇 and 𝒈 we can write down 
𝑃(𝒇, 𝒈) which determines the stochastic transitions between states. More precisely, 𝑃(𝒇, 𝒈) defines a 
Markov chain. A Markov chain represents any stochastic transition process between states where the 
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probability of transition depends on the current state and not the history of states visited. As there are 
payoffs or rewards associated with the states visited by the Markov chain, this represents a Markov 
reward process.  

1.1.2 The beta discounted reward.  
There is one additional quantity needed before the stochastic game is complete and the Markov 
reward process can be defined further. This is the value of the discounted reward parameter (β), here 
also referred to as discount factor, which can take on values between 0 and 1. This parameter 
determines how much the farmer values his future payoffs over his current payoffs. Mathematically, 
the value of β specifies the weight given to next year’s payoff relative to the current payoff. Taking 
the extreme cases, if β=0, next year’s payoff carries no weight in the decision making. If β=1, next 
year’s payoff carries equal weight to the current payoff.  More general, any monetary reward that 
might be earned in the future is less valuable than the same monetary reward earned today. As an 
example of its derivation, consider an interest rate x. An interest rate x means than an amount of 
money M today would be worth M(1+x) in one year’s time and M(1+x)n in n years time. Conversely, 
an amount Mk earned k years in the future is worth of Mk /(1+x)k today. Setting 

𝛽 = +
(+MN)

  (7) 

then the current worth of an amount Mk earned k years in the future can be written Mk 𝛽 k. The total 
worth of current and future payoffs is given by the discounted sum 

𝑀P +𝑀+𝛽 +𝑀,𝛽, + 𝑀R𝛽R + ⋯+𝑀"𝛽" +⋯ 

The weights 1, 𝛽, 𝛽,, 𝛽R,	…, 𝛽",	… sum to 1/(1 −	𝛽). Therefore, we can obtain a normalised sum by 
scaling the weights by (1 −	𝛽). This gives the standard beta discounted sum 

𝐷V(𝑀P,𝑀+,𝑀, … ) = (1 − 𝛽)𝑀P + (1 − 𝛽)(𝑀+𝛽 +𝑀,𝛽, + 𝑀R𝛽R … ) (8) 

This is connected to the Markov reward process (31) such that if there is a Markov chain determining 
the visits to future states, and therefore the series of future payoffs, then future rewards will need to 
be discounted. 

1.1.3 The Markov reward process.  
Consider the example of a simple system with only 1 state. Define vk to be the long-term value 
accrued by player k and let rk be the payoff to player k at each time. Then 

v" = 𝑟" + 𝛽𝑟" + 𝛽,𝑟" + 𝛽R𝑟" + ⋯ 

which can be rewritten as 

v" = 𝑟" + 𝛽(𝑟" + 𝛽𝑟" + 𝛽,𝑟" + ⋯) 

i.e. 

v" = 𝑟" + 𝛽v" (9) 
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which can be rearranged to give v" = YZ
(/[\). Now consider the general case with multiple states and 

let vk(s) be the long term value accrued by player k starting in state s. Assuming the process starts at 
time t, the long term value, v"(𝑠), must equal the payoff at time t when in state s, given 
by	𝑟" Bs, 𝒇, 𝒈D, plus 𝛽 multiplied with the expected long-term value accrued from the state 𝑆_M+	given 
that the state at time t was s, i.e. 

v"(𝑠) = 𝑟" Bs, 𝒇, 𝒈D + 𝛽𝔼Bv"(𝑆_M+|𝑆_ = 𝑠)D (10) 

The expected value 𝔼 of v"(𝑆_M+|𝑆_ = 𝑠) is derived by weighting the value in state 𝑠8 by the 
probability of transitioning to that state i.e. 

𝔼(v"(𝑆_M+|𝑆_ = 𝑠)) = 	∑ 𝑃(𝒇, 𝒈)𝒔IJ	v"(𝑠8)IJ   

Let v" be the vector (of length equal the number of states) of long-term values for player k, then in 
matrix form, equation (10) is written 

v" = 𝑟" B𝒇, 𝒈D + 𝛽	𝑃(𝒇, 𝒈)	v"   (11) 

To find the Nash equilibrium, for any 𝒇 and 	𝒈, equation (11) is solved for v" to give 

(𝐼 − 𝛽	𝑃(𝒇, 𝒈))	v" = 𝑟" B𝒇, 𝒈D 

where 𝐼	is the identity matrix, and thus v" = (𝐼 − 𝛽	𝑃(𝒇, 𝒈))c+		𝑟" B𝒇, 𝒈D. For instance, consider 
the payoffs returned to each player under a fixed strategy played by the one player: The matrix 
𝑇(𝑠, v") above defines the elements of which the expected long-term value accrued after starting in 
state s and following transition to another state determined by actions 𝑎+ and 𝑎,.  

𝑇<𝑠, v> = ef 𝑝(𝑠8|𝑠, 𝑎+, 𝑎,)v(𝑠8)
IJ∈h

i
./0+,	.20+	

,,,

 

If player 2 plays strategy 𝒈(𝑠), then player 1 receives a current payoff given by the vector 

𝑅+(𝑠)𝒈(𝑠) 

where the elements give the payoff for each of the possible actions taken by player 1. If we assume 
that player 1 knows how to play optimally from the next time point then the expected future payoff 
for each of the actions player 1 might take is given by the elements of the vector  

𝑇<𝑠, v+>𝒈(𝑠) 

Therefore, the total discounted future reward from playing each of the possible actions is given by the 
elements of the vector 
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𝑅+(𝑠)𝒈(𝑠) + 𝛽𝑇<𝑠, v+>𝒈(𝑠)   (12) 

Correspondingly, if player 1 plays strategy 𝒇(𝑠), then player 2 receives a current payoff given by the 
vector 

𝒇(𝑠)𝑅,(𝑠) 

and assuming that player 2 knows how to optimally play from the next time point, then the expected 
future payoff for each of the actions player 2 might take is given by the elements of the vector 

𝒇(𝑠)𝑇<𝑠, v,> 

Therefore, the total discounted future reward from playing each of the possible actions is given by the 
elements of the vector 

𝒇(𝑠)𝑅,(𝑠) + 𝛽𝒇(𝑠)𝑇<𝑠, v,>    (13) 

1.2 The Nash equilibrium and the pareto and social optimum.  

The final step is to specify the constraints on 𝒇 and 	𝒈 that ensure that the outcome is a Nash 
equilibrium. The idea is to view the matrices given in expressions (3) and (4) as straightforward 
payoff matrices in a one-stage game as in the initial example. Thus, expression (3) is equivalent to 
matrix A (see section’Basic definitions’ of the main manuscript) and expression (4) is equivalent to 
matrix B, and  𝒇 and 	𝒈 are equivalent to X and Y. The only difference is that the simple game had 
one state, whereas we now have constraints for each state. The appropriate constraints are therefore 
given by 

𝑅+(𝑠)𝒈(𝑠) + 𝛽𝑇<𝑠, v+>𝒈(𝑠) ≤ v+(𝑠)𝟏, 

𝒇(𝑠)𝑅,(𝑠) + 𝛽𝒇(𝑠)𝑇<𝑠, v,> ≤ v,(𝑠)𝟏,𝑻 

where 𝟏, B10D and 𝟏,𝑻  (1, 1) and  v+(𝑠) is the value to player 1 in state s when playing the Nash 
equilibrium strategy 𝒇(𝑠), and v,(𝑠) is the value to player 2 in state s when playing the Nash 
equilibrium strategy 𝒈(𝑠). Nash equilibria are not necessarily Pareto-optimal. The Pareto-optimal 
solution is a set of strategies in which no player’s expected gain can be improved upon without 
decreasing the expected gain of any other player. A game may have many Pareto optima, but in this 
paper we investigate the Pareto optimum which is also a social optimum. The social optimum is 
defined as the solution for which the sum of payoffs is maximised. Note that a social optimum must 
also be a Pareto optimum because if it were possible to find a strategy that improves the payoff of 
one player without reducing the payoff of another then this implies a potential social optimum 
instead. 

Numerical solution 
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To solve the stochastic game we apply nonlinear optimization routines using the R software package 
version 3.4.2 (32), minimizing the objective function 

∑ Ip Gv" − 𝑟" B𝒇, 𝒈D − 𝛽P B𝒇, 𝒈D v"H"0+,,    (14) 

where k refers to the number of the respective player, 𝐼	is the identity matrix,  v" is the value vector 
for player k, B𝒇, 𝒈D represents the vector of expected payoffs, and 𝛽 denotes the discount factor, 

which is then multiplied with the stochastic transition matrix P B𝒇, 𝒈D v". 

 


