SUPPLEMENT

Dead in the water: the vicious cycle of blanks during natural level ¹⁴C manipulation of marine algal cultures

Stephanie Kusch, Albert Benthien, Klaus-Uwe Richter, Björn Rost, Gesine Mollenhauer

Table S1. Radiocarbon (Δ^{14} C) and stable carbon isotope (δ^{13} C) results of purified chlorophyll *a*, alkenones, and LMW alkanoic acids. Errors denote 1 σ analytical uncertainties. Reproducibility is $<2\sigma$ analytical uncertainties.

Sample	MODERN		IN	INTERMEDIATE			FOSSIL		
	δ ¹³ C [‰]	Δ^{14} C [‰]	ID [#]	δ ¹³ C [‰]	Δ ¹⁴ C [‰]	ID [#]	δ ¹³ C [‰]	Δ ¹⁴ C [‰]	ID [#]
E. huxleyi									
DIC pre-growth	$-1.0{\pm}0.1$	60.0±3.4	100689	-14.5 ± 0.1	-380.1 ± 2.4	100691	-22.1 ± 0.1	-711.1±1.6	100693
DIC post-growth	$4.2{\pm}0.1$	83.0±3.5	100690	-12.1 ± 0.1	-437.1 ± 2.0	100692	-13.1 ± 0.1	-519.4 ± 2.1	100694
chlorophyll a	$-15.4{\pm}0.1$	24.5±10.6	89070	-27.6 ± 0.1	-463.9 ± 2.0	89071	-22.5 ± 0.1	-277.6 ± 2.5	89072
alkenones	-20.2 ± 0.1	$77.0{\pm}3.9$	89073	-35.0 ± 0.1	-451.3 ± 2.1	89074	-30.2 ± 0.1	-280.3 ± 2.5	89075
T. pseudonana									
DIC pre-growth	-14.8 ± 0.1	-43.9 ± 2.9	100695	-8.8 ± 0.1	-135.7 ± 3.0	100697	-16.5 ± 0.1	-439.8 ± 2.2	100699
DIC post-growth	-11.0 ± 0.1	-505.2 ± 2.5	100696	$-2.4{\pm}0.1$	-172.8 ± 2.6	100698	-23.6 ± 0.1	-843.1 ± 1.3	100700
chlorophyll a	-27.8 ± 0.1	-452.3±1.9	89076	n.d.	-357.0 ± 42.8	ETH 44554	-34.7 ± 0.1	-706.5 ± 2.3	89078
C14:0 alkanoic acid	-30.2 ± 0.1	-348.8 ± 3.1	89079	n.d.	-490.5 ± 37.2	ETH 44552	n.a.	n.a.	
C16:0 alkanoic acid	n.a.	n.a.		n.d.	-332.9 ± 25.5	ETH 44553	-42.6 ± 0.1	-653.3 ± 2.0	89082
C16:1 alkanoic acid	n.a.	n.a.		n.a.	n.a.		n.d.	-689.6 ± 23.7	ETH 44555

[#] NOSAMS ID number; IDs with ETH prefix represent ultra-small samples analyzed at ETH Zürich.

n.a. Not analyzed.

n.d. Not determined.

Sample	MODERN	INTERMEDIATE	FOSSIL
E. huxleyi			
DIC pre-growth	2.04	2.05	1.82
DIC post-growth	0.82	1.25	0.81
biomass	735,300	366,900	584,600
T. pseudonana			
DIC pre-growth	2.04	2.14	2.24
DIC post-growth	1.34	1.36	1.82
biomass	n.d.*	n.d. *	n.d. *

Table S2. DIC concentrations (mmol/kg) and final cell biomass (cells/ml) in the *E. huxleyi* and *T. pseudonana* cultures.

* Could not be determined with the Coulter Counter.

Fig S1. Chromatogram of the purified 'Modern' $C_{14:0}$ alkanoic acid fraction. GC-based compound purity is 98.6%.

3

Fig S2. Chromatogram of the purified 'Modern' alkenones fraction. GC-based compound-fraction purity is 98.3%.

Fig S3. Chromatogram of the 'Modern' chlorophyll *a* fraction obtained from *E*. *huxleyi* after the first LC purification step.

Fig S4. Chromatogram of the purified 'Intermediate' $C_{14:0}$ alkanoic acid fraction. GC-based compound purity is 99.9%.

Fig S5. Chromatogram of the purified 'Intermediate' $C_{16:0}$ alkanoic acid fraction. GC-based compound purity is 99.9%. Note that the signal at approximately 35 min is not a peak, but an artefact caused by a detector fault.

Fig S6. Chromatogram of the purified 'Intermediate' alkenones fraction. GC-based compound-fraction purity is 99.8%.

Fig S7. Chromatogram of the 'Intermediate' chlorophyll *a* fraction obtained from *E. huxleyi* after the first LC purification step.

Fig S8. Chromatogram of the purified 'Fossil' $C_{16:0}$ alkanoic acid fraction. GC-based compound purity is 97.3%.

Fig S9. Chromatogram of the purified 'Fossil' $C_{16:1}$ alkanoic acid fraction. GC-based compound purity is 99.4%.

Fig S10. Chromatogram of the purified 'Fossil' alkenones fraction. GC-based compound-fraction purity is 99.8%.

Fig S11. Chromatogram of the 'Fossil chlorophyll *a* fraction obtained from *E*. *huxleyi* after the first LC purification step.