

Supplementary Material

- **1** Supplementary Figures and Tables
- 1.1 Supplementary Figures

Supplementary Figure 1. Related to Figure 1. Ectopic GMCs are generated upon Fzr loss in type I and type II NSC lineages.

(A) Type II MARCM clones of MARCM driver control (FRT19A), fzr^A , fzr^B , fzr^{8F3} , $fzr^A + tub > Fzr-HA$, $fzr^B + tub > Fzr-HA$ and $fzr^{8F3} + tub > Fzr-HA$ were labeled with Dpn, Ase and CD8. tub > Fzr-HA refers to UAS-Fzr-HA driven by tub-Gal4 from MARCM driver, so Fzr-HA is expressed only in MARCM clones that lose tub-Gal80 upon mitotic recombination.

(B, C and D) Quantifications of the number of Dpn⁻ Ase⁺ cells (B, immature INPs and GMCs), Dpn⁺ Ase⁺ (C, mature INPs) per type II MARCM clones and the percentage of clones with two or more Dpn⁺ Ase⁻ NSCs (D) for (A). Control, n = 11; *fzr⁴*, n = 24; *fzr^B*, n = 22; *fzr^{8F3}*, n = 20; *fzr⁴* + *tub*>*Fzr-HA*, n = 21; *fzr^B* + *tub*>*Fzr-HA*, n = 17; *fzr^{8F3}* + *tub*>*Fzr-HA*, n = 19.

(E) Type II MARCM clones of MARCM driver control (FRT19A), fzr^A and fzr^B were labeled with Ase, PntP1 and CD8.

(**F and G**) Quantifications of the number of PntP⁺ Ase⁻ (F) and PntP⁺ Ase⁺ immature INPs (G) for (E). For (E and F), control, n = 22; fzr^A , n = 25; fzr^B , n = 20.

(H) Type I NSC lineages of control (β -gal^{RNAi}) or fzr^{RNAi} with Type I NSC driver (ase-Gal4; UAS-mCD8-GFP) were labeled with Dpn, Ase and CD8.

(I) Type II NSC lineages of control (β -gal^{RNAi}) or fzr^{RNAi} with Type II NSC driver (*wor-Gal4, ase-Gal80/CyO; UAS-mCD8-GFP*) were labeled with Dpn, Ase and CD8.

(J and K) Quantifications of the number of Dpn⁻ Ase⁺ cells (J, immature INPs and GMCs) and Dpn⁺ Ase⁺ (K, mature INPs) for (I). For both (J) and (K), control, n = 5; fzr^{RNAi} , n = 10.

(L) Cell number per type I or type II MARCM clones in MARCM driver control (FRT19A), fzr^A and fzr^B . For type I clones: control, n = 22; fzr^A , n = 28; fzr^B , n = 20. For type II clones: control, n = 20; fzr^A , n = 24; fzr^B , n = 21.

Data are presented as mean \pm SD. ** for 0.001<P \leq 0.01; **** for P \leq 0.0001. Asterisks, NSCs; white arrowheads, GMCs (and immature Ase⁺ Dpn⁻ INPs for Fig S1A and S1I); white arrows, Ase⁻ PntP1⁺ immature INPs; blue arrows, Ase⁺ PntP1⁺ immature INPs; white dotted lines, clone outline. Scale bars, 5µm. n, number of quantified clones.

Ase, Asense; Dcr2, Dicer 2; Dpn, Deadpan; Fzr, Fizzy and cell division cycle 20 related; GMC, Ganglion Mother Cell; INP, intermediate neural progenitor; MARCM, mosaic analysis with a repressible cell marker; Mira, Miranda; ns, statistically nonsignificant; NSC, neural stem cell; PntP1, Pointed isoform P1; UAS, upstream activating sequence; Wor; worniu.

Supplementary Figure 2. Related to Figure 2. Fzr promotes NSC lineage differentiation independent on NSC asymmetric division or its functions in glial cells.

(A) Metaphase NSCs in control (FRT19A), fzr^A and fzr^B MARCM clones were labeled with DNA, Mira, PH3 and GFP. n = 10 for each genotype.

(B) Metaphase NSCs in control (FRT19A), fzr^A and fzr^B MARCM clones were labeled with Ase, Polo, PH3 and GFP. control, n = 10; fzr^A , n = 11; fzr^B , n = 10. White arrowheads, kinetochore localization of Polo; yellow arrowheads, mitotic spindle pole localization of Polo.

(C) Type I MARCM clones of MARCM driver control (FRT19A) and fzr^A were labeled with Mira, cleaved caspase-3 and GFP. n = 20 for each genotype. Asterisks, NSCs; white dotted lines, clone outline.

(**D**) Type I NSC lineages on the ventral side of third instar larval brain lobes of control (β -gal^{RNAi} + UAS-Dcr2) or fzr^{RNAi} + UAS-Dcr2 with pan-neural driver (pros-Gal4) were labeled with Dpn, Ase and Phall. n = 20 brain lobes for each genotype.

(E) NSC lineages in third instar larval brain of heterozygous fzr^{G0418} (fzr-lacZ) /+ were labeled with DNA, Elav, and β -Gal (the product of *lacZ* gene that is inserted in *fzr* locus). n = 10 brain lobes. Asterisks, NSCs.

(F) The larval brain lobe of heterozygous $fzr^{G0418/+}$ were labeled with DNA, Repo, and β -Gal. White arrowheads, Repo⁺ β -Gal⁺ glial cells. n = 10 brain lobes.

(G) Type I NSC lineages on the ventral side of third instar larval brain lobes of control (β -gal^{RNAi} + UAS-Dcr2) or fzr^{RNAi} + UAS-Dcr2 with glial driver (repo-Gal4).

(**H and I**) Quantification of the number of Dpn⁻ Ase⁺ cells (GMCs, H) and Dpn⁺ Ase⁺ (NSCs, I) for type I NSC lineages in (G). For (H), control, n = 20 clones; $fzr^{RNAi} + UAS-Dcr2$, n = 27 clones. For (I), control, n = 5 brain lobes; $fzr^{RNAi} + UAS-Dcr2$, n = 5 brain lobes.

Data are presented as mean \pm SD. * for P \leq 0.05 and ns for P > 0.5. Scale bars, 20 μm (D, F and G) and 5 μm (the rest).

Ase, Asense; β -gal, β -galactosidase; Dcr2, Dicer 2; Dpn, Deadpan; Elav, embryonic lethal abnormal visual system; Fzr, Fizzy and cell division cycle 20 related; GMC, Ganglion Mother <u>C</u>ell; MARCM, mosaic analysis with a repressible cell marker; Mira, Miranda; NSC, neural stem cell; Phall, Phalloidin; PH3, phospho-Histone H3; Polo, Polo kinase; Pros: Prospero; Repo: reversed polarity; UAS, upstream activating sequence.

Supplementary Figure 3. Related to Figure 3. Fzr localization in larval brain.

(A) Larval brains expressing genomic EGFP- Fzr^{BAC} were co-stained with Dpn and Repo. n = 10 brain lobes. White arrows, Repo⁺ Fzr^+ glial cells.

(B) Type II NSC lineages of control (β -gal^{RNAi}), *ida*^{RNAi}, *cdc*20^{RNAi_1} and *cdc*20^{RNAi_2} with Type II NSC driver (*wor-Gal4, ase-Gal80; UAS-CD8-GFP*) were labeled with Dpn, Ase and CD8.

(C) Larval brain lobes of *UAS-HA-RCA1* with Type II NSC driver (*wor-Gal4, ase-Gal80; UAS-CD8-GFP*) were labeled with HA and CD8. The right panel is the zoom-in image of the area outlined by the yellow dotted box in the left panel.

(D) Larval brain lobes of control (β -gal^{RNAi}) or UAS-HA-RCA1 with NSC driver (wor-Gal4) were labeled with Dpn, Ase and Phall. Yellow dotted lines indicate boundary between optic lobes and central brains.

(E) Quantifications of the number of Dpn⁻ Ase⁺ cells (GMCs) per type I clones for (D). control, n = 30; *UAS-HA-RCA1*, n = 51.

(F) Type II NSC lineages of control (β -gal^{RNAi}) or UAS-HA-Rca1 with Type II NSC driver (wor-Gal4, ase-Gal80; UAS-mCD8-GFP) were labeled with Dpn, Ase and CD8.

(G and H) Quantifications of the number of Dpn^-Ase^+ cells (G, immature INPs and GMCs) and Dpn^+Ase^+ (H, mature INPs) for (F). Control, n = 4; UAS-HA-Rca1, n = 18.

Data are presented as mean \pm SD. ns with P > 0.05. Asterisks, NSCs; white dotted lines, clone outline. Scale bars, 10 μ m (A and D), 5 μ m (the rest).

Ase, Asense; β -gal, β -galactosidase; Cdc20, cell division cycle 20; Dcr2, Dicer 2; Dpn, Deadpan; EGFP, enhanced green fluorescent protein; Fzr, Fizzy and cell division cycle 20 related; GFP, green fluorescent protein; GMC, Ganglion Mother <u>C</u>ell; Ida, Imaginal discs arrested; INP, Intermediate neural progenitor; ns, statistically nonsignificant; NSC, neural stem cell; Rca1, Regulator of cyclin A1; Repo: reversed polarity; UAS, upstream activating sequence; Wor; Worniu.

1.2 Supplementary Table 1

Name	Sequence	Note
Fzr-N-tag-EGFP-F	GCA AGT TTT GTT TGG TTA CAT TTG AGT	generation of
	TTG TGT TGA GTT TTT GCC AGC CAA	recombineering EGFP-
	AGG CGC TTA AGA TGA TGG TGA GCA	Fzr ^{BAC}
	AGG GCG AGG AG	
Fzr-N-tag-EGFP-	GAT TCC GTG CCA CAG GAC TGT AGT	
PL452R	GCT TCA GGA TGC GCT TCT CGT ACT	
	CGG GAC TAA AAC TAG TGG ATC CCC	
	TCG AGG GAC	
Fzr-N-reco-F	AGTCCGTCGAAAAACAGCAC	To verify EGFP-Fzr ^{BAC}
Fzr-N-reco-R	ATAACGGCTCGTGCAGAGTT	
Fzr-N-reco2-F	GTC GCT GTA GTC CGT CGA AAA ACA	
	GCA C	
Fzr-N-reco2-R	ATA ACG GCT CGT GCA GAG TTC AAT GC	

Table 1. The primers used for generation of EGFP-Fzr^{BAC}