Supplemental tables

Grapevine	GPGV	GPGV	GPGV	other viruses ^a	hydroponic	experimental	in-field	experimental
cane	detection	sequence	variant		experiment	condition ^D	experiment	condition ^c
1	+	fvg30	C	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	S
2	+	fvg88	C	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	S
3	+	fvg01	C	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	А
4	+	fvg52	C	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	А
5	+	fvg43	Α	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	А
6	+	fvg50	A	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	А
7	+	fvg00	A	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	S
8	+	fvg53	Α	GRSPaV; HSVd; GYSVd-1	Х	+B;-B	Х	S
9	+	fvg84	C	GRSPaV; HSVd; GYSVd-1			Х	S
10	+	fvg18	В	GRSPaV; HSVd; GYSVd-1			Х	А
11	+	fvg29	Α	GRSPaV; HSVd; GYSVd-1			Х	А
12	+	fvg86	Α	GRSPaV; HSVd; GYSVd-1			Х	S
13	-		-	GRSPaV; HSVd; GYSVd-1	Х	+B;-B		
14	-		-	GRSPaV; HSVd; GYSVd-1	Х	+B;-B		
15	-		-	GRSPaV; HSVd; GYSVd-1	Х	+B;-B		
16	-		-	GRSPaV; HSVd; GYSVd-1	Х	+B;-B		
17	-		-	GRSPaV; HSVd; GYSVd-1	Х	+B;-B		
18	-		-	GRSPaV; HSVd; GYSVd-1	Х	+B;-B		
19	-		-	GRSPaV; HSVd; GYSVd-1	Х	+B;-B		
20	-		-	GRSPaV; HSVd; GYSVd-1	X	+B;-B		

Supplemental table 1. Experiment setting

^a Detection for 12 viruses was carried out (GPGV, GRSPaV, HSVd, GYSVd-1-2, GVA, GVB, GFkV, GLRaV-1-2-3, GFLV, ArMV, GRVFV, GSyV-1) ^b Each cane collected in field was divided in two cuttings, equally distributed to +B and -B conditions ^c A= asymptomatic; S= symptomatic

Supplemental table 2. List of BOR proteins used in phylogenetic analysis. Transmembrane domains (T MD) were predicted using the Phobius program (Kall *et al.*, 2004).

Organism	Protein name and reference	NCBI protein number	Protein length (aa)	TMD
Anabidonaia	AtBOR1 (Takano et al., 2002)	NP_850469.1	704	10
thaliana	AtBOR2 (Miwa et al., 2013)	NP_191786.1	703	10
manana	AtBOR4 (Miwa et al., 2007)	NP_172999.1	NCBI protein number Protein length (aa) P_850469.1 704 P_191786.1 703 P_172999.1 683 P_001302529.1 701 DF30188.1 701 P_001303160.1 704 DF30190.1 703 P_022553077.1 704 BQ52428.1 714 BS83563.1 666 P_010652294.1 717 P_001267820.1 720 P_00151747.1 709	9
	BnBOR1;1a (Sun et al., 2012)	NP_001302529.1	701	10
	BnBOR1;1c (Sun et al., 2012)	ADF30188.1	701	10
Brassica napus	BnBOR1;2a (Sun <i>et al.</i> , 2012)	XP_022574681.1	705	10
Drussicu napus	BnBOR1;2c (Sun et al., 2012)	NP_001303160.1	704	10
	BnBOR1;3a (Sun et al., 2012)	ADF30190.1	703	10
	BnBOR1;3c (Sun et al., 2012)	XP_022553077.1	704	10
Citrus macrophylla	CmBOR1 (Canon <i>et al.</i> , 2013)	ABQ52428.1	714	10
Hordeum vulgare	xBOT1 (Sutton <i>et al.</i> , 2007)	ABS83563.1	666	10
Oryza sativa	OsBOR1 (Nakagawa et al., 2007)	XP_015620545.1	711	10
	VvBOR1 (Perez-Castro et al., 2012)	XP_002282501.1	720	12
Vitis vinifera	VvBOR2	XP_010652294.1	717	10
	VvBOR3	NP_001267820.1	721	10
Zea mays	ZmBOR1 (Chatterjee et al., 2014)	NP_001151747.1	709	12

Organism	Protein name and reference	NCBI protein number	Protein length (aa)
	AtNIP5;1 (Takano et al., 2006)	NP_192776	304
Arabidopsis thaliana	AtNIP6;1 (Tanaka et al., 2008)	NP_178191.1	305
Arabiaopsis inanana	AtNIP1;2 (Wang et al., 2017)	NP_193626.1	294
	AtNIP3;1 (Xu et al., 2015)	NP_174472.2	323
Prassica nanus	BnaNIP5;1 (Diehn et al., 2019)	XP_013684074.1	301
<i>Β</i> Γάζετες πάρμε	BnaNIP6;1 (Diehn et al., 2019)	XP_013727031.1	305
Citrus trifoliate	CiNIP5 (An et al., 2012)	AFN37617.1	300
	OsNIP2;1 (Ma and Yamaji, 2006)	XP_015626173.1	298
Oryza sativa	OsNIP2;2 (Ma and Yamaji, 2006)	XP_015644134.1	298
	OsNIP3;1 (Hanaoka <i>et al.</i> , 2014)	AAG13499.1	241
Solanum lycopersicum	SINIP5;1 (di Gioia et al., 2017)	NP_001274288.1	295
Vitia vinifona	VvNIP5;1	XP_002276319.1	298
vilis vingera	VvNIP6;1	XP_002272988.1	354
	ZmNIP3;1 (Leonard et al., 2014)	NP_001105021.1	302
Zea mays	ZmNIP2;1 (Gu et al., 2012)	NP_001105637.1	295

Supplemental table 3. List of NIP sequences used for the construction of the phylogenetic tree.

Supplemental table 4. F-values and P-values of a two-way ANOVA for biometric parameters, such as canopy and root weight, internode lenght and leaf number, evaluating the main and interactive effects of boron (B) availability and virus (GPGV) infection. F and P values in bold are significant differences at P < 0.05.

Biometric	Test	F-value	P-value	
parameter				
	В	82,684	<0,001	
Canopy weight	GPGV	0,243	0,629	
	interaction	0,633	0,438	
	В	38,684	<0,001	
Root weight	GPGV	0,0181	0,895	
	interaction	0,056	0,816	
	В	29,241	<0,001	
Internode lenght	GPGV	0,0406	0,843	
	interaction	0,407	0,532	
	В	46,297	<0,001	
Leaf number	GPGV	0,883	0,361	
	interaction	0,0509	0,824	

Supplemental table 5. F-values and P-values of a two-way ANOVA for nutrient content in root and leaf evaluating the main and interactive effects of boron (B) availability and virus (GPGV) infection. F and P values in bold are significant differences at P < 0.05.

organ	nutrient	test	F-value	P-value	notes]	organ	nutrient	test	F-value	P-value	notes
		В	26,049	<0,001				Ca	В	29,789	<0,001	
	Ca	GPGV	3,382	0,086					GPGV	1,928	0,182	1
		interaction	0,0356	0,853					interaction	2,454	0,135	1
		В	1,474	0,244					В	10,233	0,005	GPGV-/-B
	K	GPGV	2,232	0,156				K	GPGV	7,317	0,014	≠
		interaction	0,0536	0,82					interaction	5,997	0,025	GPGV+/-B
		В	17,371	<0,001				Mg	В	50,814	<0,001	
	Mg	GPGV	0,0245	0,878					GPGV	1,711	0,207	1
		interaction	0,275	0,607					interaction	0,906	0,354	1
		В	0,337	0,57				Р	В	6,971	0,017	
	Р	GPGV	0,263	0,616					GPGV	0,0031	0,956	1
		interaction	0,127	0,727					interaction	3,776	0,068	1
		В	248,683	<0,001				В	В	1277,587	<0,001	
	В	GPGV	1,965	0,181					GPGV	0,51	0,484	1
root		interaction	1,923	0,186			loof		interaction	4,119	0,057	
1001	Cu	В	171,598	<0,001			icai		В	0,0508	0,824	
		GPGV	4,063	0,062				Cu	GPGV	1,39	0,254	1
		interaction	0,00541	0,942					interaction	0,686	0,418	
		В	0,000171	0,99				Fe	В	38,752	<0,001	
	Fe	GPGV	3,891	0,067					GPGV	1,355	0,26	1
		interaction	0,258	0,619					interaction	0,18	0,677	1
		В	0,171	0,685	GPGV-/-B				В	20,308	<0,001	
	Mn	GPGV	0,324	0,578	≠			Mn	GPGV	1,663	0,214	1
		interaction	10,9	0,005	GPGV+/-B				interaction	1,73	0,205	
		В	3,584	0,078					В	82,927	<0,001	GPGV-/-B
	Na	GPGV	0,993	0,335				Na	GPGV	9,356	0,007	≠
		interaction	2,773	0,117					interaction	10,541	0,005	GPGV+/-B
		В	31,73	<0,001					В	85,768	<0,001	GPGV-/-B
	Zn	GPGV	0,142	0,711				Zn	GPGV	12,942	0,002	≠
		interaction	2,483	0,136					interaction	1,719	0,206	GPGV+/-B

Supplemental table 6. F-values and P-values of a two-way ANOVA for gene expression in root and leaf evaluating the main and interactive effects of boron (B) availability and virus (GPGV) infection. F and P values in bold are significant differences at P < 0.05.

organ	gene	test	F-value	P-value	notes
		В	24,872	<0,001	
	VvBOR1	GPGV	0,114	0,74	
		interaction	1,219	0,286	
		В	36,159	<0,001	GPGV-/-B
	VvBOR2	GPGV	4,113	0,062	¥
		interaction	3,186	0,096	GPGV+/-B
		В	2,044	0,173	GPGV-/-B
root	VvBOR3	GPGV	3,423	0,084	≠
		interaction	6,548	0,022	GPGV+/-B
		В	593,936	<0,001	
	VvNIP5	GPGV	2,757	0,118	
		interaction	0,0906	0,768	
		В	8,552	0,01	
	VvNIP6	GPGV	0,032	0,86	
		interaction	0,049	0,828	
		В	56,621	<0,001	GPGV-/-B
	VvBOR1	GPGV	18,103	<0,001	≠
		interaction	3,707	0,075	GPGV+/-B
		В	13,249	0,002	GPGV-/-B
	VvBOR2	GPGV	11,191	0,004	≠
		interaction	6,321	0,023	GPGV+/-B
		В	1,001	0,334	
leaf	VvBOR3	GPGV	1,738	0,209	
		interaction	0,0616	0,808	
		В	56,504	<0,001	GPGV-/-B
	VvNIP5	GPGV	4,232	0,059	≠
		interaction	2,177	0,162	GPGV+/-B
		В	38,601	<0,001	GPGV-/-B
	VvNIP6	GPGV	4,019	0,065	≠
		interaction	3,685	0,076	GPGV+/-B

References

An, J. C., Liu, Y. Z., Yang, C. Q., Zhou, G. F., Wei, Q. J., & Peng, S. A. (2012). Isolation and expression analysis of CiNIP5, a citrus boron transport gene involved in tolerance to boron deficiency. Sci. Hortic. 142, 149-154. doi: 10.1016/j.scienta.2012.05.013

Cañon, P., Aquea, F., Rodríguez-Hoces de la Guardia, A., and Arce-Johnson, P. (2013). Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol. Plant. 149, 329–339. doi: 10.1111/ppl.12037

Chatterjee, M., Tabi, Z., Galli, M., Malcomber, S., Buck, A., Muszynski, M., et al. (2014). The borate efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 26, 2962–2977. doi: 10.1105/tpc.114.125963

Di Gioia, F., Aprile, A., Sabella, E., Santamaria, P., Pardossi, A., Miceli, A., et al. (2017). Grafting response to excess boron and expression analysis of genes coding boron transporters in tomato. Plant Biol. 19(5), 728-735. doi: 10.1111/plb.12589

Diehn, T. A., Bienert, M. D., Pommerrenig, B., Liu, Z., Spitzer, C., Bernhardt, N., et al. (2019). Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26 -like Intrinsic Plant J. 100(1), 68-82. doi: 10.1111/tpj.14428

Gu, R., Chen, X., Zhou, Y., and Yuan, L. (2012). Isolation and characterization of three maize aquaporin genes, ZmNIP2; 1, ZmNIP2; 4 and ZmTIP4; 4 involved in urea transport. BMB Rep. 45(2), 96-101. doi: 10.5483/BMBRep.2012.45.2.96

Käll, L., Krogh, A., and Sonnhammer, E. L. (2004). A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338(5), 1027-1036. doi: 10.1016/j.jmb.2004.03.016

Leonard, A., Holloway, B., Guo, M., Rupe, M., Yu, G., Beatty, M., et al. (2014). tassel-less1 encodes a boron channel protein required for inflorescence development in maize. Plant Cell Physiol. 55, 1044–1054. doi: 10.1093/pcp/pcu036

Ma, J. F., and Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11, 392–397. doi: 10.1016/j.tplants.2006.06.007

Miwa, K., Takano, J., Omori, H., Seki, M., Shinozaki, K., and Fujiwara, T. (2007). Plants tolerant of high boron levels. Science 318, 1417. doi: 10.1126/science.1146634

Miwa, K., Wakuta, S., Takada, S., Ide, K., Takano, J., Naito, S., et al. (2013). Roles of BOR2, a boron exporter, in cross linking of rhamnogalacturonan II and root elongation under boron limitation in Arabidopsis. Plant Physiol. 163, 1699–1709. doi: 10.1104/pp.113.225995

Nakagawa, Y., Hanaoka, H., Kobayashi, M., Miyoshi, K., Miwa, K., and Fujiwara, T. (2007). Cell-type specificity of the expression of OsBOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19, 2624–2635. doi: 10.1105/tpc.106.049015

Pérez-Castro, R., Kasai, K., Gainza-Cortés, F., Ruiz-Lara, S., Casaretto, J. A., Peña-Cortés, H., et al. (2012). VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol. 53, 485–494. doi: 10.1093/pcp/pcs001

Sun, J., Shi, L., Zhang, C., and Xu, F. (2012). Cloning and characterization of boron transporters in Brassica napus. Mol. Biol. Rep. 39(2), 1963-1973. doi: 10.1007/s11033-011-0930-z

Sutton, T., Baumann, U., Hayes, J., Collins, N. C., Shi, B. J., Schnurbusch, T., et al. (2007). Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449. doi: 10.1126/science.1146853

Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., et al. (2002). Arabidopsis boron transporter for xylem loading. Nature 420, 337–340. doi: 10.1038/nature01139

Tanaka, M., Wallace, I. S., Takano, J., Roberts, D. M., and Fujiwara, T. (2008). NIP6;1 is a boric acid channel for preferential transport of boron to growing short tissues in Arabidopsis. Plant Cell 20, 2860–2875. doi: 10.1105/tpc.108.058628

Wang, Y., Li, R., Li, D., Jia, X., Zhou, D., Li, J., et al. (2017) NIP1; 2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 114, 5047-5052. doi: 10.1073/pnas.1618557114.

Xu, W., Dai, W., Yan, H., Li, S., Shen, H., Chen, Y., et al. (2015). Arabidopsis NIP3;1 plays an important role in arsenic uptake and Root-to-Shoot translocation under arsenite stress conditions. Mol. Plant 8, 722–733. doi: 10.1016/j.molp.2015.01.005