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Appendix 1: TEER - resistance of blood plasma 
Blood plasma makes up 55 - 60% of the total volume of blood.  It is about 90% water by volume 
and contains various ionic and proteins: 
Ion Concentration (mM) 
Sodium 135 - 145 
Potassium 3.7 - 5.1 
Chloride 95 - 105 
Calcium 2.1 - 3.7 
Carbonate 23 - 31 
Phosphate 0.7 - 1.4 
 
Protein  Concentration (mg mL-1) 
Albumin 35 - 50 
IgG 5 - 7 
other 10 - 15 
 
The conductivity of blood plasma can be estimated from the molar conductivity using the Debye-
Huckel-Onsager equation: 

 Λ  = Λ˚ - (A Λ˚ + B) √c                                                               (A1.1) 

The molar conductivity at infinite dilution (Λ˚) for NaCl is 161 cm2 Ω-1 mol-1 at 37 ˚C. 1  Taking 
A = 1489 cm5/2 Ω-1 mol-1/2 and B = 6.83 cm3/2 mol-1/2 at 37 ˚C, the molar conductivity (Λ) for a 
140 mM NaCl solution is 130  cm2 Ω-1 mol-1.    

The resistivity can then be calculated from: 

 
 
ρpl =

1
κ
= 1
Λc

  (A1.2) 

The resistivity for a 140 mM NaCl solution at 37 ˚C is 54.8 Ω cm, in good agreement with the 
experimentally measured resistance of blood plasma (54 - 62 Ω cm.2  
The resistivity of whole blood depends on the fraction hematocrit: 
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ρbl =

ρpl 1+ ξh( )
1− h

  (A1.3) 

where ρpl is the resistivity of the blood plasma, h is the fraction hematocrit, and ξ is a form factor 
dependent on the shape of the red blood cells.3   
 
Appendix 2:  2D transport  
The net flux of a solute J (mole s-1) across a barrier is the difference between the input and output 
fluxes:  

 
J = dN

dt
= kincin − koutcout

 (A2.1) 
where N is the number of moles of solute in the output side, kin,2D and kout,2D are the first order rate 
constants (cm3 s-1), cin and cout (mole cm-3) are the solute concentrations on the input and output 
sides, respectively.4-6 
For diffusive transport it is seen that:4-6 

  
J = dN

dt
= −DA

dc
dx  (A2.2) 

where D is the diffusion coefficient (cm2 s-1) and A is the area (cm2).  The solute permeability is 
defined as the flux through unit area for unit concentration gradient: 

  
P2D = J

AΔc  (A2.3) 
From Fick’s first law the permeability coefficient can be related to the diffusion coefficient: 

  
P2D = D

Δx  (A2.4) 
The flux can be written as: 

  
J = dN

dt
= −P2DAΔc

 (A2.5) 
where ∆c = cout - cin.  Note that N = cout(t)V, where V is the volume of the output side, and hence:  

  

dc
dt

= −
P2DA

V
cout (t)− cin( )J

 (A2.6) 
Rearranging: 

  

dc
cin − cout (t)

=
P2DA

V
dt

 (A2.7) 
Integrating: 
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 cout (t) = cin 1− exp − P2DA
V

t⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 (A2.8) 

or  
N(t) = Vcin 1− exp − P2DA

V
t⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟  (A2.9) 

For short times: 

  
1− exp − P2DA

V
t⎛

⎝⎜
⎞
⎠⎟ =

P2DA
V

t
 (A2.10) 

and hence: 

 
cout (t) =

P2DA
V

cint
  (A2.11) 

or  N(t) = PAcint  (A2.12) 
 
Appendix 3:  resected vessel assay 
We define Nbath as the number of moles of solute in the bath, Ncell as the number of moles of 
solute in the endothelium, and Nlum as the number of moles of solute in the lumen of the vessel.  
The concentration of solute in the bath is cbath = Nbath/Vbath and in the lumen is clum = Nlum/Vlum.  As 
long as Vbath and Vlum >> Vcell, we can take show that: 

 
dNlum
dt

= Vlumdclum
dt

= kinAcbath − koutAclum
 (A3.1) 

Rearranging: 

 dclum
kinAcbath − koutAclum

= 1
Vlum

dt   (A3.2) 

Note that Vlum, kin, kout, and A are constants.  We assume that Vbath >> Vlum, and hence cbath is 
approximately constant.  Integrating equation (A3.2) and recognizing that clum = 0 at t = 0, we 
obtain:  

 clum(t) =
kin
kout

1− exp − koutA
Vlum

t
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
cbath   (A3.3) 

Substituting for kin and kout: 

 clum(t) = cbath 1+
kpgp
km

⎛
⎝⎜

⎞
⎠⎟
1− exp t

Vlum
Akm

2 +
kpgp
km

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (A3.4) 

At long times, the concentration in the lumen reaches a steady state value given by: 
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 clum(∞) =
kin
kout

cbath = 1+
kpgp
km

⎛
⎝⎜

⎞
⎠⎟
cbath   (A3.5) 

Therefore, the time dependence of the concentration of solute in the lumen can be simplified as: 

 
clum(t) = clum(∞) 1− exp

t
τ

⎛
⎝⎜

⎞
⎠⎟   (A3.6) 

 
Appendix 4:  in vivo transport 
The net flux of a solute (J) between the brain and plasma is the difference between the flux into 
and out of the brain, Where the flux in and out from one compartment to another may be 
described as the product of a first order rate constant, kin,3D and kout,3D, and its respective 
concentration, cpl and cbr. 

  
J =

dQbr

dt
= kin,3Dcpl − kout,2Dcbr  (A4.1) 

If we assume only a small amount of solute accumulates in the brain relative to the plasma 
(Qbr/Vbr << cpl), then we can ignore the back flux (kout,3Dcbr ≈ 0).7 

  

dQbr
dt

≈ kin,3Dcpl   (A4.2) 
Integrating equation A4.2, assuming that the concentration of solute in plasma (cpl) is constant, 
we obtain  

  
Qbr ≈ kin,3Dcplt  (A4.3) 

where t is the time of infusion, also known as the amount of time the brain is exposed to the 
drug.  The net flux of solute into the brain can also be described by Fick's first law and related to 
the permeability coefficient (P3D): 

  
J = P3DS cpl − cbr( )  (A4.4) 

Assuming the concentration of solute in the brain (cbr) is not significant over the duration of 
infusion (cbr ≈ 0): 

  
J ≈ P3DScpl   (A4.5) 

where S is the normalized luminal surface area of vessels (cm2 gbr
-1) in the brain.  Consider the 

mass balance of solute entering a length of brain microvessel (Figure A4.1).  The total amount of 
solute that enters through the arterial end (xa) is partitioned between diffusion out of a section of 
vessel with thickness Δx, and flow out of the venous end (xv).  Assuming that the back flux is 
negligible, the inflow of total solute (gs s-1 gbr

-1) in plasma is equal to the sum of the flux into the 
brain parenchyma (equation A4) and the outflow of remaining solute in plasma (gs s-1 gbr

-1).  
Inflow and outflow can be described as the product of concentration (cpl) and flow rate (F) into 
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and out of the vessel.  The flux into the brain is related to the permeability coefficient and the 
surface area and concentration (equation A4.5). 
 

 
From mass balance: 

  
Fcpl(x) = P3D 2π rΔxcpl(x)+ Fcpl(x + dx)  (A4.6) 

For small Δx (cm gbr
-1): 

  
−F

cpl(x + dx)− cpl(x)

Δx
≈ −F

cpl(x)

dx
= P3D 2π rcpl(x)

 (A4.7) 
Rearranging and integrating along the vessel from the arterial end (xa) to the venous end (xv) we 
obtain: 

  
cpl(xv ) = cpl(xa )exp −

P3DS
F

⎛
⎝⎜

⎞
⎠⎟   (A4.8) 

where 
 

2π rdx
xa

xv∫ = S
 

The amount of solute that enters the brain (Qbr) over an infusion time of t with a given flow rate 
F is: 

  
Qbr = cpl(xa )− cpl(xv )( )Ft

  (A4.9) 
Substituting equation A4.8 into equation A4.9 yields: 

  

Qbr

t
= cpl(xa ) 1− exp −

P3DS
F

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥F

  (A4.10) 
From equation A4.3, we see that: 

  
kin,3D ≈

Qbrcpl

t0   (A4.11) 

 
Figure A4.1. Illustration of solute mass balance. 
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Substituting equation A4.10 into A4.11 we obtain the Crone-Renkin Equation,8, 9 which relates 
kin, 3D to P3D. 

  
kin,3D = F 1− exp −

P3DS
F

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

  (A4.12) 
If P3DS >> F, then the exponential term can be linearized:  

  
1− exp −

P3DS
F

⎛
⎝⎜

⎞
⎠⎟
≈

P3DS
F   (A4.13) 

Combining equations A4.12 and A4.13, we obtain: 

  
kin,3D ≈ P3DS    (A4.14) 

This equation is valid for short infusion periods over which back flux is negligible.  
Alternatively, equation A4.14 can derived using equation A4.3 to approximate the net flux of 
solute into the brain: 

 
 
J =

Qbr
t

≈ kin,3Dcpl   (A4.15) 

Combining equations A4.15 and A4.4 and simplifying yields equation A4.14. 
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