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S1 Analysis of input current structure in the mean- and

fluctuation-driven input regimes

Here, we analyze in more detail the input structure for the three input regime cases discussed
in the main manuscript as well as in two further intermediate cases. Equations denoted by
“Eqn. (M.n)” and figures denoted by “Fig. M.n” refer to the respective Eqn. (n) and Fig. n in
the main manuscript.
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Figure 1: (A) shows the mean µo (solid lines) and standard deviation σo (dashed lines) of the
total input RI as a function of J for three different values of η as predicted from Eqn. (M.5)
(thin lines) in comparison to results from simulations. In all cases there is a transition from the
mean-driven (µ > σ) to the fluctuation-driven (σ > µ) case (for orientation the horizontal red
line indicates the firing threshold Vthr). This crossover-point shifts to the right with increasing
external drive amplitude. (B) and (C) show the coefficient of variation of the interspike inter-
vals CV[ISI] and pairwise zero-lag spike train Pearson correlation coefficient estimated from
simulations (using a bin-size of ∆t = 0.1 ms), respectively. The color code is the same as in
panel (A). In addition we show CV and correlations in the strongly fluctuation-driven regime
(µ[RI] = 5 mV, σ[RI] = 60 mV as used in Fig. M.1 D–F in light blue, and a second choice
µ[RI] = 15 mV, σ[RI] = 30 mV, cf. Fig. 2 C,D, in blue). (D) shows the self-consistent rate
for the same two choices as predicted by Eqn. (M.5) (thin lines) versus what is obtained in
simulations (thick lines). (E) depicts the mean (solid lines) and standard deviation (dashed
lines) of the input RI and (F) of the free membrane potential Vfree, respectively, measured from
simulations (thick lines) in comparison to the expected values assuming uncorrelated Poisson
input spike trains (thin lines). In all cases N = 2500, κ = 0.1N , g = 6, and β = 0.8.
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Fig. 1 A shows mean µ[RI] (solid lines) and standard deviation σ[RI] (dashed) of the total
input as a function of coupling strength J for three different values of η (η = {1.5, 3.5, 10} from
black to light gray) as predicted from Eqn. (M.5) and as estimated from simulations (thicker
lines). In all cases at one point the neurons change from a mean-driven (µ > σ) to a fluctuation-
driven (σ > µ) regime. As to be expected, the smaller η is, and thus the larger the relative
contribution of the net inhibitory recurrent input RIs,

the smaller is the coupling strength at which this switch occurs (see black curves, for
orientation the red vertical line denotes the threshold Vthr). The mean of the input current
is always well-predicted by Eqn. (M.5) for subcritical J , however the standard deviation of
the input RI as observed in simulations is larger than expected by theory, independent of J
(here, we simulated for 10 s per trial and averaged over ten trials per parameter tuple). The
reason is the clustered, locally synchronized spiking activity in networks driven by constant
external input that renders input spike trains more regular and correlated than expected for
uncorrelated Poisson spike trains [1].
In Figs. 1 B and C we hence show the average coefficient of variation (CV) of interspike intervals
(ISI), and the pairwise spike correlations as a function of J for the same η-values as in Fig. 1
A (same color code). The average CV[ISI] is defined by

CV[ISI] =
1

M

M∑
i=1

σ[ISIi]

µ[ISIi]
. (1)

Again, we averaged over ten trials per parameter tuple, and for each network randomly picked
M = 500 neurons. If spike trains have Poisson statistic, we expect a CV of one, while smaller
CV indicates more regular, higher CV more irregular spiking. Indeed, Fig. 1 B shows that
spiking is very regular for small coupling strength independent of η, while it increases to values
higher than one around the onset of pattern formation, that occurred between Jc = 0.5 and
0.6 mV in the simulations. The increase is more pronounced for larger η (lighter gray levels).

The average pairwise spike train correlations as a function of J and η shown in Fig. 1 C were
estimated as follows: We chose 250 adjacent neurons (N = 2500), i.e., a local neighborhood
κ, binned the spike trains with bin width ∆t = 0.1 ms and computed all pairwise zero-timelag
correlation coefficients that were then averaged (cf. [1]). Spike train correlations are significant,
and more so for larger J and smaller external noise amplitude η (same color code as in Fig. 1
A).
In ring networks neighboring neurons sample from basically identical input pools in the recur-
rent network. This leads to strong input current correlations in the case where the additional
uncorrelated external Poisson noise is weak, explaining the increase with recurrent coupling
strength, and decrease with external input amplitude η [1].
So we conclude that there are indeed pronounced deviations from Poisson towards more regular
and synchronous activity for subcritical J that corresponds to a more mean-driven input cur-
rent regime as expected by the noiseless approximation Eqn. (M.10), and hence the predictions
Jmd
c derived in this regime are appropriate.

In the following we compare these findings with the firing rate and input statistics in the
strongly fluctuation-driven regime, where there is both excitatory and inhibitory external drive,
adjusted such that the total input current mean and variance is the same for all J . The blue
curves in Figs. 1 B and C show CV and correlations for this input regime. The light blue curves
denote the choice we used in Figs. M.1 D–F, i.e., µ[RI] = 5 mV and σ[RI] = 60 mV, while blue
shows another choice with smaller total input variance, i.e., µ[RI] = 15 mV, σ[RI] = 30 mV.
In the latter case, the CV[ISI] stays at approximately one with varying J (J = 0.7 mV is the
maximal coupling strength such that Eqn. (M.4c) stays non-negative), while in the first case
the CV indicates that spiking is more irregular than expected for Poisson spiking for all values
of J . This is a consequence of the high variance of the input current and resulting membrane
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potential fluctuations: In effect, each neuron will spend long times at quite hyperpolarized
values, corresponding to extended periods of silence, while during occasional large depolarizing
input transients it can emit several spikes in a short interval. This yields more irregular output
spiking than expected for a Poisson process, even for isolated neurons receiving uncorrelated
Poisson input currents of such high variance (not shown)1.
Only when these networks undergo pattern formation do we see a change to slightly smaller
values that are explained by the more oscillatory activity in the emerging activity bumps
(see Fig. M.1 F). For µ[RI] = 5 mV and σ[RI] = 60 mV (light blue) pattern formation onset
agrees well with the prediction by Eqn. (M.9), i.e., J fd

c = 0.9 mV, see also Fig. M.1 D–F. For
µ[RI] = 15 mV, σ[RI] = 30 mV (blue), however, pattern formation occurs earlier at around
Jc ≈ 0.615 mV versus the prediction J fd

c = 0.844 mV (cf. also Fig. 2 C,D), although the network
is clearly and by construction in the fluctuation-driven regime.

The average zero-timelag spike train correlations are shown in Fig. 1 C. They are generally
low, much lower than in the constant external drive case. This is due to the weak influence
of incoming spikes from the recurrent network in the highly fluctuating barrage of externally
injected spikes, especially at small J . For larger J-values spike train correlations increase with
the growing impact of the correlated recurrent input spike trains. As to be expected, this
effect is stronger in the case of weaker noise µ[RI] = 15 mV, σ[RI] = 30 mV (blue). So also
in this input regime deviations of the spiking statistics from uncorrelated Poisson may lead to
deviations from the prediction of Eqn. (M.9). for the onset of pattern formation.

To investigate this further, Fig. 1 shows the self-consistent firing rates (Fig. 1 D), and mean
and variance of the total input (Figs. 1 E), as well as the free membrane potential, i.e., the
membrane filtered input current (Fig. 1 F). Fig. 1 D demonstrates that for both choices of mean
and standard deviation of total input current, firing rates stay close to the Siegert prediction
Eqn. (M.5) and only deviate to smaller values with onset of pattern formation. Still, when
injecting adapted external currents via the rates Eqns. (M.4) we implicitly assume that not
only the external currents are uncorrelated Poisson (which they are by construction), but also
that the recurrent contributions in RIs are.

To check how well mean and standard deviation of the total input current RI really adhere
to the prescribed values, Fig. 1 E shows µ[RI] and σ[RI] measured from actual simulations
for varying J (thick solid and dashed line, respectively) in comparison to the expected values
(thin lines). For the strongly fluctuation-driven network there is good agreement between
measurement and expectation (light blue), while there are small deviations to higher mean and
standard deviation for µ[RI] = 15 mV, σ[RI] = 30 mV (blue) that coincide with the increase
in spike train correlations and are thus explained by them.

However, as apparent from Fig. 1 F, the free membrane potential, i.e., the membrane filtered
input spike trains, shows much clearer deviations for both choices of µ[RI], σ[RI] from the
expectation for uncorrelated Poisson input spike trains, i.e., µ[Vfree] = µ[RI] and σ[Vfree] =
σ[RI]/

√
2 [2]. For small J there is still good agreement, while for larger J & 0.5 the standard

deviations start to decrease, especially for µ[RI] = 15 mV, σ[RI] = 30 mV. Hence, even if the
input currents appear to agree with the assumptions underlying Eqn. (M.5), the linear filtering
by the membrane reveals deviations from Poisson spiking.

To summarize Fig. 1, we note that there are clear deviations from Poisson input statistics
in the regime of constant external drive (Fig. 1 A–C) that become more pronounced for larger
external drive amplitude η. In this regime neurons operate in a more mean-driven regime ex-
plaining the better prediction of onset of pattern formation Jmd

c by the noiseless approximation
Eqn. (M.13).
For the constant total input current regime, that ensures that the system is in the fluctuation-

1We note that the Fano factor of spike counts, F∆t = σ2[counts/∆t]/µ[counts/∆t] has the same behavior as
the CV[ISI], and is equal or larger than unity in this input regime.
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driven regime for all J , the prediction J fd
c by Eqn. (M.9) seems to be more appropriate if

σ[RI] � θ, however also here we observe input statistics that deviates from the expectation
for Poisson spiking (Fig. 1 E, F).

Fig. 2 shows variance and kurtosis of the rate distribution for two other input realizations
that are characterized by weak average external drive, and spiking can thus be considered
fluctuation-driven. In Figs. 2 A,B the external drive is constant at η = 1.5 corresponding to a
µ[RI] < Vthr for J > 0.2 mV, see Fig. 1 A (black lines). The linear response-derived stability

analysis Eqn. (M.9) predicts a J fd
c = 3.98 mV (J

fd|dν/dµ
c = 1.52 mV), while true onset of pattern

formation as observed in simulations agrees very well with the prediction by the noiseless
approximation Eqn. (M.13), marked by the red dashed line in Figs. 2 A,B.

Figs. 2 C,D show variance and kurtosis, respectively, of the rate distribution for a ring
network driven with external input adapted to yield constant total input with varying J , here,
µ[RI] = 15 mV and σ[RI] = 30 mV. As discussed before, Eqn. (M.9) predicts a J fd

c = 0.844 mV,
while true onset of pattern formation, as indicated by a sudden increase in variance and decrease
in kurtosis, clearly occurs much earlier at Jc ≈ 0.615 mV, presumably because of the deviations
from the assumptions underlying Eqn. (M.5), as discussed earlier.
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Figure 2: (A), (C) show the variance, (B), (D) the kurtosis of the rate distribution estimated
from ten network simulations for two further intermediate input cases. In (A) and (B) the
external input was constant with amplitude η = 1.5. Pattern formation onset occurs around
J & Jmd

c = 0.506 mV, similar as for η = 3.5, cf. M.5 (H,I), while Eqn. (M.9) predicts a J fd
c =

3.98 mV. In (C) and (D) external input was adjusted to ensure constant total input mean
µ[RI] = 15 mV and standard deviation σ[RI] = 30 mV. Eqn. (M.9) predicts a J fd

c = 0.844 mV,
while pattern formation already occurs at lower Jc ≈ 0.615 in simulations.

Excess synchrony of the excitatory subpopulation

In this subsection we take a closer look at the individual spike statistics of the excitatory and
inhibitory subpopulations in the ring.
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The theory based on the linear response approximation assumes asynchronous-irregular
input spike trains (Poisson-type spiking). Nearby neurons in ring networks typically have a
high amount of common input that induces non-trivial pairwise correlations of output spike
trains, visible as locally synchronous spike clusters. To assess the amount of excess synchrony
with respect to the underlying Poisson assumption we measure the autocovariances of the
compound input spike count per time interval ∆t, i.e., Zi(t|∆t) =

∑
j∈Pre[i] zj(t|∆t), where zj

are the individual contributions of presynaptic neurons j, in relation to what is expected for a
Poisson process. The resulting relative autocovariance function of counts Ā(τ) is given by

Ā(τ) =
E[Zi(t|∆t)Zi(t+ τ |∆t)]

Et[Zi(t|∆)]
(2)

Ā(0) is a measure that integrates the underlying autocovariance function around zero time lag
[3]. If all contributing spike trains are uncorrelated Poisson processes, Ā(0) = 1, while excess
synchrony within a chosen ∆t yields Ā(0) > 1. If the autocovariance function has negative
contributions, Ā(0) can also be smaller than unity.

Separating Zi(t|∆t) into the respective contributions of the excitatory and inhibitory presy-
naptic subpopulations, i.e., Zj∈E and Zj∈I, reveals that the resulting inhibitory relative auto-
covariance ĀI(τ) is lower than the excitatory one ĀE(τ), even for small coupling strength J ,
cf. Fig. 3, in particular for larger ∆t (Fig. 3 B,C). In part this is explained by the larger spatial

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Coupling strength J (mV)

5

10

15

20

Ā
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Figure 3: The zero time-lag relative autocovariances of the local excitatory (red) and inhibitory
(blue) input pool for three choices of ∆t (A: ∆t = 0.1 ms, B: ∆t = 1 ms, and C: ∆t =
10 ms). The dashed red line corresponds to an excitatory population sampled at identical
spatial dilution as the inhibitory one. The central peak of ĀE(τ) grows with the temporal
integration window ∆t, whereas the peak of ĀI(τ) decreases. The input scenario is the constant
total input mean and variance case, with external noise (excluded from measure A) adjusted
such that µ[RI] = 15 mV and σ[RI] = 30 mV. Other parameters: N = 2500, κ = 250, g = 6,
J = 0.5 mV.

dilution of the inhibitory neurons contributing to the neuronal input: they are five neurons
apart, thus any two consecutive inhibitory neurons share less common input than consecutive
excitatory neurons. To correct for this we compute ĀE(τ) across an equally spatially diluted
sample of excitatory neurons (dashed red line in Figs. 3 A-C). For ∆t = 0.1 ms this yields
comparable ĀE(τ) and ĀI(τ) (Fig. 3 A), while for larger ∆t even the diluted sample indicates
higher excess synchrony (Figs. 3 B,C).

The origin of this becomes clear when we inspect the full relative autocovariance functions,
cf. Fig. 4. For small ∆t, ĀE(τ) is positive for all τ with approximately exponentially decaying
flanks around zero time-lag. With increasing ∆t more of this positive covariance is integrated
into the central peak, indicating excess synchrony within ∆t precision. On the other hand,
ĀI(τ) has negative flanks around zero time-lag, indicating a lack of near synchrony. Increasing
∆t to 10 ms can thus even yield ĀI(0) < 1.
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Figure 4: Full relative autocovariance functions of the excitatory (red) and inhibitory (blue)
subpopulation for three different ∆t ((A,B): ∆t = 0.1 ms, (C,D) ∆t = 1 ms, and (E,F) ∆t =
10 ms). In the left column J was set to 0.1 mV, in the right column to 0.5 mV. Parameters as
in Fig. 3.

At first sight it seems counterintuitive that excitatory and inhibitory neurons have this dif-
fering spike train statistics, because they receive the same number of excitatory and inhibitory
inputs at approximately identical firing rates. The explanation for this effect lies in the lo-
cal connectivity of ring networks: excess synchrony of the excitatory population will reinforce
further spikes in the vicinity, while spikes from the inhibitory population decreases the instan-
taneous firing probability. Near synchrony is thereby effectively enhanced in the excitatory
population and suppressed in the inhibitory one (also see [4] for a related discussion of this ef-
fect in the framework of balanced random networks). Such volleys of excitatory input spikes act
like compound pulses with large amplitude (on the order of up to θ) in an otherwise balanced
asynchronous background activity. At these amplitudes the effective gain Eqn. (M.7) derived
from linear response theory becomes linear in J with a slope proportional to 1/θ, i.e., the slope
of the linear model Eqn. (M.13). Fig. 5 demonstrates this effect. This explains the fact that
Eqn. (M.13) has better predictive power also in the intermediate or weakly fluctuation-driven
scenarios.

6



Figure 5: Effective gain W̃ (cf. (M.7)) as a function of network coupling strength J (gray curve)
in comparison to the integrated impulse response in simulations (black dots, here µ[RI] =
15 mV, σ[RI] = 30 mV) and the linear approximation (M.11) of the Siegert equation (M.5) in
the noiseless limit (red line). The effective gain estimated from simulations follows the response
theory predictions up to amplitudes up to ∼ 15 mV. This is a direct consequence of the high
variance of the input against which even large pulses appear comparably weak. Moreover,
for high pulse amplitude J , W̃ (J) becomes parallel to the low-noise approximation W̃ = J/θ
(cf. Eqn. (M.11)).

S2 Relation of the coarse-grained model to Ermentrout-

Cowan networks

In neural field modeling ring models are amongst the best-studied systems [5, 6, 7]. Neural field
models are in principle derived from spiking neuron network dynamics by performing a contin-
uum limit that yields neuron densities and spatial coupling kernels. In a common framework
[9, 10, 5] the firing rate of a neuron k is given by a current Ik(t) that non-linearily depends
on the membrane potential by a transfer function S(Vk(t)), which is commonly assumed to
be, e.g., a step function, a rectified linear function or a sigmoidal with activation threshold u.
The input currents that arrive at a postsynaptic neuron i are then weighted, summed up and
filtered by a temporal kernel h(t) to give the membrane potential of the neuron, such that

Vi(t) =

t∫
−∞

h(t− τ)
∑
k

αikS(Vk(τ)) dτ +

t∫
−∞

h(t− τ)Pi(τ) dτ , (3)

where αik is the distance-dependent synaptic weight and P (t) is an external current. If h(t) =
exp[−t/ξ]/ξ, the dynamics (3) can be transferred to a differential equation that is structurally
equivalent to Eqn. (1) in the main manuscript, i.e.,

ξ
dVi(t)

dt
= −Vi(t) +

∑
k

αikS(Vk(t)) + Pi(t) . (4)

With αik = αw(|i − k|),
∑

k w(|k|) = 1 the continuum limit then leads to the coupled field
equations

ξX
dVX (x, t)

dt
= −VX (x, t) +

∑
Y∈{E,I}

αXY

∞∫
−∞

WXY(|x− x′|)S(V (x′, t)) dx′ + PX (x, t) , X ,Y ∈ {E , I} . (5)

7



0 5 10 15 20 25 30
Λ

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

λ
c

λc (Λ)

dλc/dΛ

dλc/dΛ|max=0

0 50 100 150 200 250
Λ

−6

−5

−4

−3

−2

−1

0

1

2

R
e
(λ
) full model

coarse grained
EC

A B

Figure 6: (A) The dispersion relation λc(Λ) for the Ermentrout-Cowan (EC) model (black)
and its derivative (gray) whose first zero gives the wavenumber of the global maximum. (B)
The full model (black), the coarse-grained model (dark gray) and the EC model (light gray,
here, S ′ was scaled to match the other two in maximal amplitude) in comparison.

for two populations E (excitatory) and I (inhibitory). Stability analysis [5] leads to a linearized
dynamical system and the eigenvalues λH(Λ) of the matrix

H(Λ) =

(
S ′E(u)αEEŵ(Λ)− 1 S ′E(u)αEIŵ(Λ)
S ′I(u)αIEŵ(Λ) S ′I(u)αIIŵ(Λ)− 1

)
, (6)

– where ŵ(Λ) denotes the Fourier transform of the coupling kernel – determines the stability
of the spatially homogeneous mode (trivial solution) to spatially inhomogeneous perturbations
of activity. In particular, for a boxcar coupling kernel B(x, σ) := Θ(|x| − σ)/2σ the Fourier
transform is given by sinc(σΛ) = sin(σΛ)/(σΛ). If we assume that the transfer function is the
same for all neurons, that αEE = αIE = 4α, and αEI = αII = −gα, and moreover substitute
S ′(u) =: s′, we obtain

H(Λ) =

(
4s′α sinc(σΛ)− 1 −gs′α sinc(σΛ)

4s′α sinc(σΛ) −gs′α sinc(σΛ)− 1

)
. (7)

With spatial extent σ = 2πκ/N of the coupling kernel on two rings of circumference 2π and
neuron densities NI/2π and NE/2π = 2NI/π, respectively, we can thus map the ring model
discussed previously to the neural field model of [5]. The resulting eigenvalues are λH(Λ) =
{−1,−1 − 2sinc(σΛ)}, where sinc(x) = sin(πx)/πx. The latter eigenvalue λc(Λ) gives the
dispersion relation f(Λ) whose maximum determines which wavenumber will grow after a
spatial perturbation and is scaled and plotted in comparison to the respective relations from
Secs. 3.2 and 3.4 in the main manuscript in Fig. 6 B. The maximum can be determined by
finding the zero of the derivative of λc with respect to Λ, and is close to but not exactly an
integer number (here ≈ 14.3, cf. Fig. 6 A), such that a rounding operation is needed to obtain
the Fourier mode vc ∼ eiΛx that complies with the constraint of periodic boundary conditions.

We note that to relate the coarse-grained model to the classical result of Ermentrout and
Cowan (1980), we specify the non-linearity in the latter work only up to the point that the
derivative S ′ matches the linearized gain of the coarse-grained model in Fig. 6 A.

S3 Comparison to two-dimensional torus-grids

Analogous to the way of computing the eigensystem in the one-dimensional case the eigensystem
of a two-dimensional torus-grid can be computed in the following way.
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The nodes of the network are distributed on a regular 2-dimensional grid with edge length
N , such that N mod 2 = 0. We assume that each fourth neuron is inhibitory as indicated in
Fig. 7 A the gray dots mark the inhibitory, black ones the excitatory neurons, the boundary
conditions are assumed to be periodic. The κ nearest neurons of a neuron i shall be neighbors
of i with respect to the l∞-norm, such that κ = 4K(K + 1), where K is the number of the
quadratic shells surrounding each node. If we want κ/N2 ≈ ε ∈ [0, 1], K = b1

2

√
1 + εN2 − 1

2
c.

We will now solve the eigenvalue problem for the general case of a unit cell of size M ×M
with M ≤ N and N modM = 0. The grid indices {i, j}, i, j = {0, ..., N − 1} map to the node
indices n by

n = Ni+ j, n ∈ {0, ..., N2 − 1}, i =
⌊ n
N

⌋
, j = nmodN . (8)

In grid indices we see that there are two invariant translation operations

Ti : {i, j} → {(i+M)modN, j} (9)

and

Tj : {i, j} → {i, (j +M)modN} . (10)

Hence,

Ti[n] = N
[(⌊ n

N

⌋
+M

)
modN

]
+ nmodN (11)

Tj[n] = N
⌊ n
N

⌋
+ (n+M) modN (12)

The arbitrary translation about p cells in i- and q cells in j-direction across the grid is given
by

T pi T
q
j [n] = N

[(⌊ n
N

⌋
+ pM

)
modN

]
+ (n+ qM) modN . (13)

We see that due to the symmetry properties of the system the coupling matrix W and the
shifting operator Tp q = T pi T

q
j commute, i.e., [Tp q,W ] = 0 and so we can diagonalize both

operators in a common basis of eigenvectors. The translation operators are unitary operators
and thus have eigenvalues ϕl, ϑk and eigenvectors wl, vk, such that

Tiwl = eiαl wl = ϕl wl , (14)

Tj vk = eiβk vk = ϑk vk .

Due to the periodic boundary conditions the eigenvalues must fullfil

T
N/M
i wl = wl ⇒ αl = 2πlM/N, l ∈ {0, ..., N/M − 1} , (15)

T
N/M
j vk = vk ⇒ βk = 2πkM/N, k ∈ {0, ..., N/M − 1} .

In our notation Eqn. 8, the node indices of the unit cell indices m ∈ {0, ...,M2−1} of the nodes
marked by the red rectangle in Fig. 7 A (we start counting in the lower left corner and go on
from left to right and finish in the upper right corner) are mapped to the global node index as
n = ι(m), with

ι : {0, ...,M2 − 1} → {0, ..., N2 − 1}, m 7→ mmodM +N
⌊m
M

⌋
. (16)
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Again we can define a map η from the M2-dimensional space of the unit cell elements to the
CM2 ⊂ CN2

η : CM2 → CM2 ⊂ CN2

, w̃ 7→ w =
M2−1∑
i=0

w̃i e ι(i) (17)

with e i the i-th canonical basis vector of the RN2
, w̃ the vector living on the sub-cell M ×M ,

and the operator family

Pk l =

N/M−1∑
p,q=0

Tp q e
−i2πM

N
(kp+lq) (18)

with k, l ∈ {0, ..., N/M − 1}.
(Pk l ◦ η) is an isomorphism

(Pk l ◦ η) : CM2 ⊂ CN2 → Eig(Tp q, ϕl, ϑk) , (19)

as can be readily checked again. The effective eigenvalue problem is hence given by

(η−1 ◦ W ◦ Pk l ◦ η)w̃ = λk lw̃ . (20)

The eigenvectors of the full matrix W are again produced by applying Pk l ◦ η to the corre-
sponding four-dimensional eigenvector of the reduced system.

For the two-dimensional embedding the grid-layout as sketched in Fig. 7 (A) was chosen
(note however, that other grid embeddings can be dealt with in the same way). With this layout
there are only 75% excitatory cells in the system, hence β = 0.75. For all other parameters
as before, the two-dimensional system is less stable with regard to the coupling strength J if
compared to the one-dimensional system, with inhibition being more dominant. However, if
scaled to the same mean input, the torus grid is in general more stable with regard to increase
in J .

S4 Input-output relation is linear for large σo

As a heuristic observation, we note in the main manuscript, that in the large-σo-limit , i.e.,
σo � µo, the integrand of Eqn. 21 becomes basically unity, and the integral thus scales as
ν−1
o ∼

√
πτmθ/σo. In particular, the input-output-relation

ν−1
o = τref + τm

√
π

Vthr−µo
σo∫

Vres−µo
σo

exp
[
x2
]

(1 + erf[x]) dx, (21)

for Vres = 0 takes the following linear form in σo:

νo(σo, µo) =
1

τm

√
π

(
σo + µo

θ
− 1

π

)
. (22)

The validity of this approximation is demonstrated in Fig. 8.
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Figure 7: (A) Network layout of the torus grid network (gray dots: inhibitory, black: excitatory,
red: minimal cell). (B) Eigenvalue spectrum of the rescaled coupling matrix for N = 4900 and
g = 6. (C) Critical eigenvalue and (D) rate distribution in the supracritical regime. (E) shows
the dispersion relation, i.e., the realpart of the eigenvalue as a function of the wavenumber.
(F) shows the rate predictions from the simple linear rate model together with the simulation
results.
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