Charge-Shift Bonding in Xenon Hydrides: An NBO/NRT Investigation on HXeY …HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CCH, CN) via H-Xe Blue-Shift Phenomena Supporting Information

Guiqiu Zhang,^{*1} Yue Su,¹ Xiaoran Zou,¹ Lei Fu,¹ Junjie Song,¹ Dezhan Chen¹ and Chuanzhi Sun^{*1}

Table S1. Calculated bond lengths $R_{\text{H-Xe}}$ and $R_{\text{Xe-Y}}$ (in Å) and monomer-to-complex frequency blue shifts (in cm⁻¹) of H-Xe stretching mode for hydrogen-bonded complexes HXeY \cdots HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CN, CCH) as well as the angle (in °) between HXeY and HX in Structure A at the MP2/def2-TZVPPD level of theory, with available experimental blue shifts. The data in parentheses were calculated at the CCSD(T) level of theory.

Monomers/Complexes	R _{H-Xe}	$R_{ m Xe-Y}$	Angle(°)	H-Xe blue	H-Xe blue
				shifts	snifts (exp)
HXeCl	1.666	2.616			
$HXeCl \cdots H_2O$	1.646	2.671	75	101 (118) ^c	82 ^c
HXeCl ···HCl	1.645	2.672	82	103	116 ^d
HXeCl ···HBr	1.644	2.674	82	102	
HXeCl ···HI	1.646	2.670	82	114	
HXeCl ··· HCN	1.648	2.661	92	88	
HXeCl ··· HCCH	1.655	2.642	79	51	
HXeBr	1.679	2.774			
$HXeBr\cdots H_2O$	1.656	2.825	71	116 (148) ^c	101 ^c
HXeBr ··· HCl	1.657	2.822	77	110	122 ^d
HXeBr ··· HBr	1.656	2.823	77	110	149 ^d
HXeBr ··· HI	1.658	2.819	78	90	
HXeBr ··· HCN	1.658	2.817	88	106	
HXeBr ··· HCCH	1.667	2.798	75	58	
HXeI	1.708	2.976			
$HXeI \cdots H_2O$	1.679	3.022	67	139 (188) ^c	138 ^c
HXeI ··· HCl	1.682	3.017	72	122 (167) ^b	94, 111, 155 ^b
HXeI ··· HBr	1.681	3.017	72	122 (149) ^a	110, 157 ^a
HXeI …HI	1.683	3.012	72	107 (120) ^a	$75, 96^{a}$
HXeI ··· HCN	1.680	3.015	83	132	
HXeI ··· HCCH	1.693	2.996	70	67 (104) ^b	49, 55 ^b

^a From ref. Tsuge et al., 2013.

^b From ref. Zhu et al., 2015.

^c From ref. Tsuge et al., 2014.

^d From ref. Lignell et al., 2008.

Table S2. Second-orde	er perturbation energies($E^{(2)}$, kcal mol ⁻¹) due to donor-acceptor
interactions in HXeY	at the MP2/def2-TZVPPD level of theory.

Molecules	$n_{Y} \rightarrow o_{H-Xe}^{*}$	$n_{H} \rightarrow \sigma^{*}_{Xe-Y}$	$n_{Xe} \rightarrow \hat{\sigma}^*_{H-Y}$
HXeCl	64.57	3957.00	1363.55
HXeBr	65.75	5187.90	1102.19
HXeI	70.75	5125.55	845.16

Explanation of the Procedure Employed to Calculate the BO of the Xe-H Bond

1. Conceptual Model in NBO/NRT

In the NBO/NRT framework, the fundamental starting point for a rational electronic theory of bonding is the Lewis-structure representation of the shared and unshared electrons in each atomic valence configuration, as formulated by Lewis. Based on the Lewis-structure model, perturbation theory is used to calculate systematically the corrections that bring the Lewis-structure model into an improved Lewis-structure model. In NBO/NRT language, it is the natural Lewis-structure model.

Subsequently, bonding analysis can be dissected into localized and delocalized contributions.

Take HXeY as an illustrative example. HXeY could be described as the hybrid of three resonance structures: $H-Xe^+ Y^-$, $H:^- Xe^+-Y$, and H^Y . When we focus on the H-Xe bond, the structure I provides a localized contribution due to electron-sharing bonding. In structure II , it is a delocalized contribution arising from a donor-acceptor interaction. In chemical language, it is dative bonding. Structure III is a long-bonding structure. There is no contribution to the H-Xe bond strength, because there are neither localized contributions nor delocalized contributions to the H-Xe bonding.

2. Calculate the Weighting of Resonance Structure

A quantitative resonance theory can help us to find the weighting of resonance structure α , according to

 $D(true) = \sum_{\alpha} \omega \alpha D \alpha^{(L)}$

where D(true) is the true density matrix of the system of interest. $D\alpha^{(L)}$ is corresponding to the density matrix of the resonance structure α . Note that $\sum_{\alpha} \omega \alpha = 1$.

3. Calculate Each Property of the System

In the NRT of framework, each property <P>true of the true delocalized system can be represented in resonance-averaged form

<P>true = $\sum_{\alpha} \omega \alpha < P > \alpha$

where $< P > \alpha$ is the value of the property for natural resonance structure α .

Still take HXeY as an example. The H-Xe bond strength D(H-Xe) can be written as $D(H-Xe) = \omega_{\perp}D_{\perp} + \omega_{\parallel}D_{\parallel} + \omega_{\parallel}D_{\parallel}$.

From the conceptual analysis of the natural Lewis-structure, we know $D_{III} = 0$. Thus, $D(H-Xe) = \omega_{\perp}D_{\perp} + \omega_{II}D_{II}$

4. Calculate Bond Order of H-Xe

When using the bond order to reflect the H-Xe bond strength, D_{\perp} and D_{\parallel} can be written as $D_{\perp} = k_{\perp} \omega_{\perp} b_{\perp}$, $D_{\parallel} = k_{\parallel} \omega_{\parallel} b_{\parallel}$, where b_{\perp} represents the normal covalent H-Xe bond order in resonance structure I, b_{\parallel} is the H-Xe dative bond order in resonance structure II.

If $k_1 = k_{11} = k$, and $b_1 = b_{11} = 1$, we obtain $b(H-Xe) = \omega_1 + \omega_{11}$ for our studied HXeY.

It is worthwhile noting that the present NBO/NRT methods could not provide the ratio of k_{I}/k_{II} , and that the adequacy in calculating the BO of the H-Xe bond has been tested through indirect comparisons with experimental results.