
Supplementary Material:
NWB Query Engines: tools to search data stored in
Neurodata Without Borders format

1 DETAILS OF NWB QUERY ENGINE

This section provides details of the operation and implementation of the NWB Query Engine, including
how a query is internally parsed, processed and evaluated, and how the tool can be called from Python
code.

1.1 Operation modes

The NWB Query Engine can be operated in three ways:

1. Stand alone application - It is possible to run the tool as a command line application with two arguments.
The first argument is a NWB file or a directory containing NWB files while the second one is a query.
If a directory is used all NWB files within the directory are searched. The results are printed to a
standard output.

2. Library function - The Query engine is integrated to a 3rd party tool. An input point is the Input
interface provided by the NWB Query Engine. The client program only instantiate the FileInput class
that enables reading NWB files from a file or a directory. Then only calls the method executeQuery
from this interface. Results are returned in the NWBResult object. Easy integration with third-party
tools is ensured by a Maven1 artifact released and described in the project repository.

3. Python server - If the Query engine is run with a command line parameter pyserver it starts as a Python
Gateway which can be called from a python code as described in Supplementary Material Section 1.3.

1.2 Parsing query

The parsed query is internally represented as a tree. An example is shown in Figure S1. The root node
is an input query while other blue nodes are individual subexpressions. A pair of leaves connected by an
operator represent a query filter. The left leaf represents the name of an attribute or a dataset and its right
sibling represents a constant restriction. The parent of two sibling nodes stores an operator between those
nodes. The NWB processor takes all leaves and starts evaluating them from down to top and from left
to right (inorder). It starts processing the tree from the first left leaf that marks a group anywhere in the
NWB file hierarchy. Then it continuously processes the descendants of the right sibling that represent
subexpressions. Each subexpression is processed analogically. Moreover, if evaluation of a first expression
returns an empty list the second expression is not evaluated if these are conjuncted (short-circuiting). This
feature significantly increases the performance of the algorithm.

Let’s say we have an extracellular electrophysiology recording of mouse doing a discrimination task with
optogenetic and auditory stimulation. This experiment is composed from several trials where each of them
takes some time and contains a different type of task.

1 https://maven.apache.org/

1

https://maven.apache.org/

Ježek et al. Supplementary Material

In the example S1 the user wants to search all epochs in a time window 200s - 400s. The processor takes
first left leaf: epochs. Then it traverses the left subtree of the right sibling and processes its leaves. First, it
takes the left leaf and finds all datasets start_time in the epochs group. Second, it takes a constant 200 from
right sibling and evaluates the condition given by the parent of these two leaves >. Last, if a result is found
the right subtree is evaluated analogically. If not evaluation is terminated because the parent node of these
two subtrees contains and (&) condition and short-circuiting is applied.

The user does not have to specify whether epochs is a group or a dataset or if start_time is a dataset or an
attribute because the internal implementation searches for both by default. When a group epochs is found
then the right side is supposed to be a dataset. If epochs were a dataset the right side would be interpreted
as an attribute.

Figure S2 depicts an UML diagram of the complete implementation of the NWB Query Engine. The
query parser block is implemented in the Query and QueryParser classes and the Parser interface. The
NWBProcessor block is implemented in the Processor interface, and the NWProcessor and NWBResult
classes. The FileApi block is implemented in the Input interface, and the FileInput and ArrayInput classes,
and the Connector interface and the HDF5Connector class. The python server is implemented in the
PyServer class. An application interface is represented by the Input interface. It has a query as an input
parameter and returns a NWBResult object.

1.3 Python Gateway

The Python Gateway allows calling the Query engine from Python code without requiring knowledge
about the internal implementation. It is implemented using a Python-Java bridge Py4j2 which enables
calling Java code from a Python program and executing a Java method defined as an entry point of this
gateway. The entry point is the Input interface depicted in Figure S2.

When the NWB query engine is run as a Python Gateway then it can process queries coming from any
python script. A code example is shown in Listing 1.

>>> from py4 j . j a v a _ g a t e w a y i m p o r t JavaGateway

>>> from py4 j . j a v a _ g a t e w a y i m p o r t Ga tewayParame te r s

>>> gateway = JavaGateway () # f o r l o c a l h o s t

>>> gateway = JavaGateway (g a t e w a y _ p a r a m e t e r s = Ga tewayParame te r s (a d d r e s s = ’ remote h o s t i p ’)) # o r f o r

remote h o s t

>>> r e s = gateway . e x e c u t e Q u e r y (" f i l e o r d i r w i th nwb f i l e s " , " que ry ")

>>> f o r x i n r e s :

. . . p r i n t (x)

Listing 1: Example of calling the python server. In the first step a JavaGateway library is imported. Then,
the user can call the executeQuery method with two parameters: (1) input file/dir and (2) required query.
The final two lines iterate over the result and print the found datasets.

2 https://www.py4j.org/

2

https://www.py4j.org/

Ježek et al. Supplementary Material

epochs : (start_time > 200&stop_time < 400)

=

epochs start_time > 200&stop_time < 400

&

start_time > 200

>

start_time 200

stop_time < 400

<

stop_time 400

Figure S1: Query Grammar Tree Example

Frontiers 3

Ježek et al. Supplementary Material

Figure S2: UML Diagram of the NWB Query Engine. A standard UML class diagram notation is used.
Classes are marked by "C" letter in a blue circle. Interfaces are marked by "I" letter in a green circle.
Solid lines with open arrowhead represent association. Green dashed lines with filled arrowhead represent
inheritance. Black filled diamonds shapes at the end of solid lines represent a composition relationship.
Gray dashed lines with open arrowhead represents a dependency.

4

Ježek et al. Supplementary Material

2 DETAILS OF SEARCH_NWB IMPLEMENTATION

The following steps are used in the search_nwb utility (file search_nwb.py) to perform each query:

1. Parse query. The query is parsed using the Python “parsimonious” module3. File lib/parse.py contains
the code to do the parsing. It contains a grammar for queries that is input to the parsimonious module
and functions that create a Python dictionary containing information about the query. The dictionary is
named "qi" (for "query information"). It is used in subsequent search steps.

2. Iterate through NWB files. The search_nwb tool has a required command line argument which is
either the path to a directory containing NWB files, or a path to a single NWB file. If a directory is
provided, the tool recursively scans the directory to find NWB files to search. If a path to a single
NWB file is provided, that file is searched. In either case, the NWB file(s) to search are iterated over.
Each file to be searched is opened for reading using the H5py library and the open file is used in the
subsequent steps.

3. Create and evaluate subquery call string. The query specified to the search_nwb tool can be
composed of multiple subqueries which are grouped using logical and (&), logical or (|) and also
parentheses. The query (which is a string) is written following the grammar rules given in sections 3.2
and 3.4.1 of the main text. After parsing, information about the query is used to create a string, (called
here, the "subquery call string") which contains a Python expression that can be executed using the
Python "eval" function and which, when executed, will perform the query. The subquery call string is
created by replacing each subquery in the query with a call to a function to execute the subquery, and
by replacing the "&" and "|" operators by the Python logical "and" and "or" operators. Evaluating the
subquery call string allows the Python interpreter to do short-circuit optimization in the execution of
the subqueries; that is, to not execute a subquery if it’s determined that the subquery would not change
the result of the overall query. The creation of the subquery call string is illustrated in Figure S3A-C.
Each subquery calls function "runsubquery" which executes and saves the results of the subquery and
returns Python logical True if the subquery succeeded, and False otherwises. The return values are
used by the Python interpreter to do short-circuit optimizations.

4. Find nodes that have all children referenced in subquery. The first step of the "runsubquery"
function is to search for nodes (groups or datasets) within the NWB file that have all the children
that are referenced in the subquery. This is done by starting at the path specified for the parent in the
subquery (left side of ":") and, if any wildcards are specified, doing a breadth-first search for nodes
that match the parent path and which also contain all the children specified in the subquery. Each node
that is found is passed to the next step.

5. Search node children for matches to subquery constraints. One of the requirements for the
search_nwb utility is that the searches must work when the method of storing the data of children
referenced in a subquery is mixed, that is, when the same subquery references a datasets that is a
column in a DynamicTable and also a child that is not a column in a DynamicTable (the child could be
an attribute). This requires two different methods of doing the search be performed within the same
subquery: (i) The search for data that is not part of the DynamicTable must use a direct comparison of
the values of the child with the specified constant given in the subquery without regard to the value of
other variables in the expression. (ii) The search for data that is part of DynamicTable requires that
the values of other variables in the expression be considered because for all children that are part of a

3 https://pypi.org/project/parsimonious/

Frontiers 5

Ježek et al. Supplementary Material

BF(.$&%/W((((((((((((((((((((((((((((((((((2GW(E(3(](G(^(9(](J(^(@(__(X)**X(F(^(2JW(E(<(__(T(F(
(

(

-F(0>2%&''"*1((=*`&1'W((((((((((((((((((E(3(](G(^(9(](J(^(@(__(X)**X(F(^(E(<(__(T(F(

((((((((((((((((((((((((((((((((((O$9S$&%/(Q (((((((O$9S$&%/(G(

(

CF(O$9S$&%/(@388('6%"1#(

((((()*%('&3%@7V159H2/((((((((((

(

AF(O$9S$&%/(@388('6%"1#(

((((()*%(S$&%/V"1<&>H2/W((((((((((((X%$1'$9S$&%/EQI@":IS%F((31<((%$1'$9S$&%/EGI@":IS%FX(

(

X%$1'$9S$&%/EQI)2IS"IS%F((31<((%$1'$9S$&%/EGI)2IS"IS%FX(

Figure S3: Creation of subquery call string for search_nwb tool. (A) Example query containing two
subqueries. (B) The tokens making up the query expression, formed by removing all parts of each subquery
to the left of the expression in the subquery. (C) To make the subquery call string, each expression in each
subquery is replaced a call to function "runsubquery". For search_nwb.py the arguments are: the index
of the subquery, ’fp’ – file pointer (H5py File object) to the NWB file, ’qi’ – query information (result
of parse) and ’qr’ – object for storing query results. (D) For query_index.py, the ’fp’ and ’qi’ arguments
used above are replaced by ’cim’ (a "Cloc_info_manager" object) which contains values of the children
variables in both subqueries.

DynamicTable, the constraints specified in the subquery must be determined using values in the same
row.

In order to fulfill this requirement, a two-phase process is used to check if a given node has values that
match a subquery. These phases are implemented respectively by functions "get_individual_values"
and "get_row_values" in file search_nwb.py. The first phase is to process all the children in the
subquery that are not part of a DynamicTable. These are called "independent" children. This is done
by considering each child individually and finding values that satisfy the binary expression referencing
the child. After this is done, the original subquery is edited, replacing the binary expression making up
the child with the string "True" if value(s) satisfying the expression were found, and the string "False"
otherwise.

The first phase is illustrated in Figure S4, parts A-D. Parts A and B respectively show example values
stored in children of a group and a subquery that searches for some of the values. (The children are
"a"4 which is not part of a DynamicTable, and datasets "b", "c_index" and "c" which are all part of a
DynamicTable). Figure S4, part C shows that the search for the matching values for the independent
child ("a") is done by loading all the values for "a" and creating a Python expression to evaluate using
the Python ’filter’ function which will return the value(s) that satisfy the expression. In part D, this
Python expression is evaluated which returns an array containing the two matching values. These are
saved in the query result object (qr). The subquery expression tokens are edited to replace the binary
expression that references "a" with "True" since results were found. Otherwise, it would be replaced
by "False". This edited subquery expression is used in the second phase, described below.

The second phase is to process the children that have values stored in a DynamicTable. This is done
by further modifying the subquery expression made in the first phase to create a Python expression

4 "a" would probably be an attribute since it’s in a group that contains a DynamicTable but is not part of the DynamicTable. But it could also be a dataset.

6

Ježek et al. Supplementary Material

BF(O6*%&<(;38$&'("1(bA!M(#%*$2W

B'("1<&2&1<&16 P1(A/13:"@?

;38$&'W =398&W

3W(QI(GI(JI(K

-F(O$9S$&%/ &>2%&''"*1(6*`&1'W

E(3(](G(^(9(](J(^(@(__(X)**X(F

CF(O&6$2(6*('&3%@7()*%(;38$&'(:36@7"1#(X3(](GXW

;38$&_cQIGIJIKd

D/67*1(&>2%&''"*1(6*(&;38$36&W(&)'_X)"86&%E(E83:9<3(>W(>(](GFI(;38$&FX

AF(O&3%@7()*%(:36@7"1#(;38$&'I(<*1&(9/W(E8"'6E&;38E&)'FFH((e&'$86("'W

O3;&<(;38$&(E"1(S%cX;"1<XdFW((f3W(cJI(Kdg

0<"6&<(6*`&1'W(((((((((((((((E(=%$&(^(9(](J(^(@(__(X)**X(F

0F(O&6$2(6*('&3%@7(%*5(;38$&'W

GH(0<"6&<(6*`&1'W((E=%$&(31<(>cQd]J(31<(31/E:32E83:9<3(/W(/__X)**XI(>cGdFFF

JH(h"'6(*)(@*8$:1'(E@;38'F(_(ccGI(KI(LdI(ccX)**XI(X93%XdI(cX93iXI(X)**XdI(cXS$>XI(ddd

KH(h"'6(*)(6$28&'(6*(@7&@`(Ei"28F(:3<&(9/W(i"28 !"8"'6Ei"2Ej@V;38'FFI(#";&'W

i"28 _(cEGI(cX)**XI(X93%XdFI(EKI(cX93iXI(X)**XdFI(ELI(cXS$>XdFd

LH(D/67*1(&>2%&''"*1(6*(&;38$36&W

&)' _(XXX)"86&%E(E83:9<3(>W(E(=%$&(31<(>cQd(](J(31<

31/E:32E83:9<3(/W(/(__(X)**XI(>cGdFFF(FI(i"28FXXX

!F(e&'$86(*)(&;38$36"*1I(&H#H(8"'6E&;38E&)'FFI('6*%&("1(S%cX;698Xd

c(cKI(cX93iXI(X)**XddI(d

kF(e&'$86(*)('&3%@7"1#(E'6*%&<(;38$&'("1(lS%lFW

P1<";"<$38(;38$&'W(3W(cJI(Kdm((=398&(;38$&'()*%(9I@W((c(cKI(cX93iXI(X)**XddI(d

b c_index c

1 2 "foo"

3 4 "bar"
4 5 "baz"

"foo"
"qux"

438$&'(:36@7"1#('$9S$&%/

Figure S4: Steps used in search_nwb utility to search a node for values matching a subquery. (A) Example
stored values for children in NWB group. (B) Example subquery expression. The values in green (above)
match the expression constraints. (C-D) Steps used in first phase to search for matches to independent
values (not part of a DynamicTable; in this case variable "a"). (E-F) Steps used in second phase to search
for matches to values stored in DynamicTable layouts. (G) The found individual values and found row
values are saved in the qr object. A more detailed description of the steps in this figure are given in Section
2 step 5.

that can be evaluated to find rows in the DynamicTable that result in the subquery expression being
True. If found, the values in these rows are saved along with values found for individual children in the
first phase.

This second phase is illustrated in Figure S4, parts E–G. In part E step 1, the expression tokens
are edited again, replacing any variables that are stored in tables with either "x[n]" (if the values do
not use an auxiliary index array) or a call of the form "any(map(lambda y: ... , x[n])" where "..." is

Frontiers 7

Ježek et al. Supplementary Material

replaced by the binary expression containing the variable with "y" substituting for the variable name
(if the values do use an auxiliary index array). In Figure S4 part E step 2 a list containing the columns
in the DynamicTable is made and stored in variable "cvals"5. Each element of a column that has an
associated index array contains a list of the values in the corresponding row (since, if the column has
an associated index array, there may be multiple values stored in each row of that column). In Figure
S4 part E step 3, a list of tuples to check (stored in variable "zipl") is made where each element is the
list of the values of all variables in the same row. Those values that have an auxiliary index array will
also be lists. List "zipl" is created using the Python assignment zipl = list(zip(*cvals)) which converts a
list of lists stored in variable "cvals" into a list of tuples containing aligned values from the lists, (e.g.
if cvals = [["a", "b", "c"], [1, 2, [3, 4]]]); zipl = list(zip(*(cvals))), gives: [(’a’, 1), (’b’, 2), (’c’, [3,
4])]). Figure S4 part E step 4) The edited tokens is put into a string, (named ’efs’ in the figure) which
contains a call to the "filter" function as in part C. In Figure S4 part F the ’efs’ string is evaluated
returning the matching row values. G) The found individual values and found row values are saved in
the qr object.

3 DETAILS OF NWBINDEXER IMPLEMENTATION

This section provides details of the SQLite3 database made by the nwbindexer build_index.py utility and
how the database is searched by the query_index.py utility.

3.1 Specification of node_type in SQLite node table

As illustrated in the main text, Figure 6, the node table has field named "node_type" which stores a
single character. The value of the field indicates the type of node. Possible values and the meaning are:
a - attribute; d - dataset; g - group that does not contain a "colnames" attribute (thus does not contain a
DynamicTable); G - group containing a ’colnames’ attribute (e.g. the group contains a DynamicTable).
(The DynamicTable layout is described in Section 2.2.2 of the main text.)

3.2 Storage of Values in SQLite database

As mentioned in the main text, Section 3.5.3, value table nval field stores only a single numeric value
(integer or float) and the sval field store all other types of data including strings, string arrays, and numeric
arrays that are in a DynamicTable.

In the value table, the type of the value ("type" field) indicates what type of data is stored. The possible
types are grouped according to whether or not the values are a column in a DynamicTable and whether or
not an index dataset is used. The different types within each of these groups are:

• Not column in a DynamicTable: scalar integer (i), scalar float (f), scalar string (s), string array (S).
• Column in DynamicTable, not using index array. Integer array (I), float array (F), string array (M),

compound (c).
• Column in DynamicTable, using index array. Integer array (J), float array (G), string array (B) and

compound (c).

For values that are in a DynamicTable, but not type "c", the values are stored using the following format
in the "sval" string:

<column_values><index_values>

5 "cvals" stands for "column values". It is not related to the variable "c" in Figure S4.

8

Ježek et al. Supplementary Material

Where <column_values> is the CSV list of values in the column and <index_values> (if present) contains
the index values in csv form prefixed by "i".

Type "c" is used for both HDF5 compound types and also for HDF5 2-d datasets. For type c, the column
types and the presence or absence of the index array are indicated by the following format of the "sval"
string:

<column_types><index_flag><column_names>,<column_values><index_values>

Where: <column_types> is a string made up of one character per column with each character the type
of the corresponding column as specified above. In other words, each character of <column_type> will
be either I, F, M (if an index dataset is not used) or J, G or B (if an index dataset is used). <index_flag>
is either "n" if there is no index array, or "i" if an index array is present. It is present not only to indicate
whether or not there is an index array, but also to mark the end of the <column_types>, since if no character
was present, the first character of <column_names> could be mistaken for a part of <column_types>.
<column_names> is a CSV list of the column names if the table is a HDF5 compound type, or a CSV list
of the zero-based column indices (e.g. 0,1,2, ...) if the value is a HDF5 2-d dataset. <column_values> is
the csv list of values in all columns concatenated together. <index_values> (if present) contains the index
values in csv form, with a prefix "i". The prefix "i" serves to separate the index values from end of the
<column_values> which could be integers.

As described above, values of index datasets in a DynamicTable are stored by appending the values in
CSV form to the values of the data set that they provide the index for. This allows the query_index.py utility
to retrieve the values of both the target dataset and the index dataset (which are used to interpret the values)
as one string, which can then be unpacked and used.

Examples of values stored are shown in Figure S5.

3.3 Implementation of build_index.py utility

To reduce the time required to build the database, Python dictionaries are used as caches within the
build_index.py program to speedup the lookup of contents previously saved in the SQLite database.

3.4 Implementation of query_index.py utility

The following steps are performed by the query_index.py utility:

1. Parse query. This is the same as step 1 used in the implementation of the search_nwb utility, described
in Section 2 of this Supplementary Material.

2. Create and execute SQL queries. For each subquery in the specified query, create and execute two
SQL queries (SELECT statements): a "normal" query which searches all files for all nodes (groups and
datasets) that satisfy the subquery expression, and for which the parent node is not a group that contain
a DynamicTable; and a "table" query, which searches all files for groups that contain a DynamicTable
and which also contain all children referenced in the subquery. The creation and execution of these
SQL queries is done when creating an instance of the "Cloc_info_manager" class. An instance of this
class is created in function "perform_query" and stored in variable named "cim". The SQL queries are
created by function "make_sql" in file "lib/make_sql.py". Examples are shown in Figure S6. The result
of executing the SQL queries are stored in the "sqr" instance variable which is a Python dictionary that
stores the data returned by the queries indexed by the file_id, and within that, indexed by the subquery
and within that, indexed by nodes (paths) found within each subquery. The end result is that all of

Frontiers 9

Ježek et al. Supplementary Material

the data needed to compute the query results are saved in the "sqr" variable and this data is organized
by the file_id, subquery number, and path within the file of the parent node and it contains values of
children that may satisfy the constraints on each subquery.

3. Iterate through files. This is done by iterating through the files that have results found in the SQL
select statements executed in step 2 (stored in variable cim.sqr). For each file:

4. Create and evaluate a "subquery call string." The subquery call string created is illustrated in
Figure S3 part D. It is similar to the subquery call string used in the search_nwb utility (shown in
Figure S3 part C), but has different calling parameters. Specifically, the first parameter (subquery index)
and last parameter (qr – query result) remains the same, but the middle two parameters fp – file pointer
(a H5py File object) and qi – query information are replaced by "cim" (the "Cloc_info_manager"
object created in step 2. Evaluating the subquery call string (using the Python "eval" function) results
in, function "runsubquery" being called to perform each subquery. Using the eval function causes the
Python interpreter to short-circuit (not make unnecessary calls) when possible.

5. Iterate through parent nodes. This is done in function runsubquery by iterating through the nodes
found by the SQL queries in step 2. For each parent node the next step (below) is done.

6. Find values of children that satisfy subquery constraints. The children values are obtained by
calling function cim.get_children_info(). The values satisfying the constraints given in the subquery
are found using the methods used in the search_nwb utility described in section 2 step 5. Note, that in
Figure S4, the value of variable "a" would not be as shown in the figure because the build_index.py
program would not store the values for numeric arrays that contain more than one element and are not
a column in a DynamicTable. But if variable "a" contained a scalar value or was an array with only
one element, that would be stored in the SQLite3 database.

A flow chart comparing the operation of search_nwb.py and query_index.py is shown in Figure S7.

3.5 Alternate designs considered

When designing the database schema for nwbindexer some alternative designs were considered. One
was to eliminate the name table and have the path for all HDF5 entries that are in the node table (groups,
datasets and attributes) be stored in the path table. This took up more space and made the SQL queries less
efficient. Another was to eliminate the path table and use only the name table to store path information and
use SQLite recursive queries (also called Common Table Expressions, or CTE) to build paths that could be
searched as part of the SQL select statements. This made the queries too slow.

Other possible designs were considered for storing the values. Instead of packing array values into
CSV strings, an alternative approach that had a table of strings and another table for numeric values was
considered, with each array element stored as a separate row entry in the proper table and with an id column
used to keep track of the array indices. Prototypes showed this could work and that queries could be done
in SQL to find matching values to queries even with the index array used with a DynamicTable, however,
with a large (realistic) amount of data, queries became quite slow; plus it would require more space to
store the values. Another alternative design concerned the generated SQL code. Instead of having two SQL
Select statements ("normal" and "table", described in Section 3.4 part 2) a method to have a single SQL
Select statement was tested using the SQLite "case" function to incorporate the functionality of both into a
single Select statement. This was more complex than having two SQL Select statements and took much
longer to execute.

10

Ježek et al. Supplementary Material

C6666666666666666666D$!$ (!3"*'6,3!67$"!6356D:,$)#2.$B%* E3,!*,!(3569$%4*6!$B%*F

@-$)7%* #' G$%4* !36(!3"* !:7* ,9$% (9$%

BG LZ(E"16&#&%F 1 LZ

BJ MHZ E)8*36F) MHZ

BK X:*$'&X(E'6%"1#F ' :*$'&

BL X)**XIX93%XIX93iX E'6%"1#(3%%3/F O)**I93%I93i

>666666666666666666D$!$ (!3"*'6#,6D:,$)#2.$B%*H6A#!834!6#,'*-69$%4*(E3,!*,!(3569$%4*6!$B%*F

@-$)7%* #' G$%4* !36(!3"* !:7* ,9$% (9$%

-G X)**XIX93%XIX93iX E'6%"1#(3%%3/F n)**I93%I93i

-J KIZIGL(E"16&#&%(3%%3/F I KIZIGL

-K KHMI JHQI(THZ(E)8*36(3%%3/F ! KHMIJITHZ

-L A b c EC*:2*$1< *%(J?<(<363'&6F

foo 1 0.7

bar 3 1.2

@ O&&(9&8*5H

';38W(MIFnA,b,c,foo,bar,1,3,.7,1.2

E666666666666666666D$!$ (!3"*'6#,6D:,$)#2.$B%*H6A#!86#,'*-69$%4*(E3,!*,!(3569$%4*6!$B%*F

@-$)7%* #' G$%4* !36(!3"* !:7* ,9$% (9$%

CG X)**XIX93%XIX93iX E'6%"1#(3%%3/Fm(GIK(E"1<&>(3%%3/F -)**I93%I93i"GI

K

CJ KIZIGL(E"16&#&%(3%%3/Fm(GIK(E"1<&>(3%%3/F o KIZIGL"GIK

CK KHMI JHQI(THZ(E)8*36(3%%3/Fm(GIK(E"1<&>(3%%3/F k KHMIJITHZ"GIK

CL a b c EC*:2*$1< *%(J?<(<363'&6m

1 0.7 foo GIJ("1<&>(3%%3/FH

3 1.2 bar

@ O&& 9&8*5H

';38W(JGBia,b,c,1,3,.7,1.2,foo,bari1,2

Figure S5: Example values stored in SQLite database. For all panels (A-C) the type of data is indicated
by the "type" field and values in the "sval" field are stored in CSV format. (A) If the data is not part of a
DynamicTable, only scalar numeric values are stored (in the nval field) and strings and string arrays (which
are stored in the sval field). (B & C) Data that are part of a DynamicTable are all stored in the sval field.
Different types codes are used to indicate the type of data and whether or not an index array is present.
Compound or 2-d datasets are indicated by type code "c" and with the individual column types and column
names proceeding the values in sval. (B) If the DynamicTable does not have an index array, type codes
"M", "I", "F" and "c" are used. If type "c", the <index_flag> is "n". (C): If the DynamicTable does have an
index array, then type codes "B", "J", "G" and "c" are used. For type "c" the <index_flag> is "i" and the
index array values (with a prefix ’i’) are appended to the end of sval. See Section 3.2 for more details.

Frontiers 11

Ježek et al. Supplementary Material

A. Normal Query

SELECT
f . i d as f i l e _ i d ,
f . l o c a t i o n as f i l e ,
bap . p a t h as p a r e n t _ a ,
ban . node_ type as node_type ,
’ s p e c i e s ’ ,
ba0n . node_ type as node_type ,
ba0v . t y p e as type ,
ba0v . s v a l a s s p e c i e s _ v a l u e

FROM
f i l e a s f ,
node as ban ,
p a t h as bap ,
v a l u e as ba0v ,
node as ba0n ,
name as ba0na

WHERE
bap . p a t h LIKE ’ g e n e r a l / s u b j e c t ’

AND
bap . i d = ban . p a t h _ i d AND
f . i d = ban . f i l e _ i d AND
ba0n . p a r e n t _ i d = ban . i d AND
ba0n . name_id = ba0na . i d AND
ba0na . name = ’ s p e c i e s ’ AND
ba0v . i d = ba0n . v a l u e _ i d AND
(ba0v . s v a l LIKE "%mouse%") AND

ban . node_ type != ’G’

B. Table Query
SELECT

f . i d as f i l e _ i d ,
f . l o c a t i o n as f i l e ,
bap . p a t h as p a r e n t _ a ,
ban . node_ type as node_type ,
’ s p e c i e s ’ ,
ba0n . node_ type as node_type ,
ba0v . t y p e as type ,
c a s e when ba0v . t y p e i n (’ i ’ , ’ f ’) t h e n ba0v .
n v a l e l s e ba0v . s v a l end as s p e c i e s _ v a l u e

FROM
f i l e a s f ,
node as ban ,
p a t h as bap ,
node as ban_colnames ,
name as bana_colnames ,
v a l u e as bav_colnames ,
v a l u e as ba0v ,
node as ba0n ,
name as ba0na

WHERE
bap . p a t h LIKE ’ g e n e r a l / s u b j e c t ’ AND
bap . i d = ban . p a t h _ i d AND
f . i d = ban . f i l e _ i d AND
ban_colnames . v a l u e _ i d = bav_colnames . i d AND
ba0n . p a r e n t _ i d = ban . i d AND
ba0n . name_id = ba0na . i d AND
ba0na . name = ’ s p e c i e s ’ AND
ba0v . i d = ba0n . v a l u e _ i d AND

ban_colnames . p a r e n t _ i d = ban . i d AND
ban . node_ type = ’G’ AND
ban_colnames . node_ type = ’ a ’ AND
ban_colnames . name_id = bana_co lnames . i d

AND
bana_co lnames . name = ’ co lnames ’

Figure S6: Sample SQL queries generated by nwbindexer. The SQL queries are generated for query:
/general/subject: species == "mouse". (A) The normal query searches for nodes (groups, datasets and
attributes) that satisfy the subquery expression, and for which the parent node is not a group that contain a
DynamicTable. Variable "ban" is an alias for the parent node, and the constraint at the end (ban.node_type
!= ’G’) prevents selecting results where the parent node is a group containing a DynamicTable (possible
values for node_type are given in section 3.1). (B) The "table" query, searches for groups that contain
a DynamicTable and which also contain all children referenced in the subquery. (A) & (B) In both
queries, the table aliases (except for the file table) starts with: "b<subquery_char><child_index>" where
<subquery_char> is: "a"-first subquery, "b"-2nd subquery, ...; and <child_index> is not present if the node
is a parent, otherwise, it’s: 0-first child, 1-second child, and so on. The alias suffix indicates Which table
is being referenced: "n" - node table, "p" - path, "v" - value, "na" - name. The string "_colnames" is
appended to the alias in the Table Query for the node, name and value tables used to retrieve the value of
the "colnames" attribute in a group that contain a DynamicTable.

12

Ježek et al. Supplementary Material

CI()+$"38&-ABI7:(

GH(D3%'&(S$&%/(

JH(P6&%36&(67%*$#7(+,-()"8&'H(

)*%(&3@7()"8&W(

KH(0;38(X'$9S$&%/(@388('6%"1#X(

<*&'W(X%$1'$9S$&%/X()*%(&3@7(

'$9S$&%/H(

LH(E%$1'$9S$&%/FW(P6&%36&(67%*$#7(

1*<&'(6736(:36@7('$9S$&%/(

23%&16(2367(6*()"1<(23%&16(1*<&'(

E67*'&(6736(73;&(388(@7"8<%&1("1(

'$9S$&%/FH((!*%(&3@7(23%&16(1*<&(

)*$1<W(

MH(!"1<(;38$&'('36"')/"1#('$9S$&%/(

@*1'6%3"16()*%(@7"8<%&1(*)(23%&16(

1*<&H(

>I(J5+":&#-'+.I7:(

GH(D3%'&(S$&%/(

JH(C%&36&(31<(&>&@$6&(O.g(O&8&@6(

'636&:&16'(6*(*963"1(8"'6(*)()"8&'(31<(

23%&16(1*<&'(6736(@*163"1(388(@7"8<%&1("1(

&3@7('$9S$&%/(31<(67&"%(;38$&'H(

KH(P6&%36&(67%*$#7(8"'6(*)(+,-()"8&'(

%&6$%1&<(39*;&H(!*%(&3@7()"8&W(

LH(0;38(X'$9S$&%/(@388('6%"1#X(

<*&'W(X%$1'$9S$&%/X()*%(&3@7('$9S$&%/H(

MH(E%$1'$9S$&%/FW(P6&%36&(67%*$#7(23%&16(

1*<&'()*$1<("1('6&2(JH((!*%(&3@7(1*<&W(

TH(!"1<(;38$&'('36"')/"1#('$9S$&%/(

@*1'6%3"16()*%(@7"8<%&1(*)(23%&16(1*<&H((

Figure S7: Comparison of steps used to execute a query by the search_nwb.py and query_index.py utilities.
The dashed lines between boxes indicate steps that perform similar functions.

Frontiers 13

	Details of NWB Query Engine
	Operation modes
	Parsing query
	Python Gateway

	Details of search_nwb implementation
	Details of nwbindexer implementation
	Specification of node_type in SQLite node table
	Storage of Values in SQLite database
	Implementation of build_index.py utility
	Implementation of query_index.py utility
	Alternate designs considered

