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SECTION A: MEASURES USED IN THE NETWORK SIMULATION
Average shortest path length

The average shortest path length (ASPL, Figure 2 B) is considered here as a measure to analyze the
spatial distribution of activation within the memory area. A high ASPL between neurons indicates that
these neurons are spatially broadly distributed across the memory area. By contrast, a low ASPL indicates
that the neurons are clustered. In particular, as strongly activated neurons are supposed to become part of a
memory representation, we focus on the distribution of highly activated neurons. For this, for each trial,
we identified the 10% of neurons with the highest activity level (index set P ) and calculated the shortest
path length (SPL; Rubinov and Sporns, 2010); using the networkX package for Python) between them and
averaged over all those paths (denoted by 〈·〉):

ASPL = 〈SPLi,j〉i,j∈P,i 6=j. (S1)

Dynamic equilibria of synaptic weights
The average outgoing recurrent synaptic weight (Figure 2 A) is a measure of the interconnection within

a neuronal sub-population in the memory area (index set Q). We therefore averaged the synaptic weight
over all the connections among neurons within the sup-population:

w̄rec = 〈wrec
i,j 〉i,j∈Q,i 6=j. (S2)

The average incoming feed-forward synaptic weight (Figure 2 F,G) is the average synaptic weight of
connections between a sub-population in the memory area (index set Q) and a specific stimulus pattern in
the input area (index set H):

w̄ff = 〈wff
i,k〉i∈Q,k∈H . (S3)

Response disparity dependent on stimulus similarity
To analyse the response disparity, stimulus S1 is presented 10 times for 5 sec with 1 sec pause in between

to form a single HA. After that, plasticity is shut off and we present variations of stimulus S1 with increasing
stimulus disparity until the stimulus equals stimulus S2 (Figure 2 C). Stimulus disparity measures the
relative amount of non-overlap between two stimulus patterns - in this case stimulus S1 and its variation (in
the following called stimulus S1’). Both stimuli are of identical size NS = 0.5 ·N I, so that the stimulus
disparity is calculated as follows:

stimulus disparity
(
S1, S1′

)
= 1− 1

NS ·
N I∑
k

Sk(S1) · Sk(S1′), (S4)

with binary stimulus patterns for a given stimulus X ∈ S1, S1′:

Sk(X) =

{
1, if Ik(X) = 130,

0, if Ik(X) = 0.
(S5)
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Thus, a stimulus disparity equal zero describes two identical stimuli, whereas a disparity equal one indicates
two non-overlapping stimulus patterns. The input area size of N I = 36 allows for 18 steps in variation of
5.5̄% each. At the end of each presentation, we compare the resulting response in the memory area with
the one at the end of the learning phase (i.e. the response to the original stimulus S1). The response vector
overlap (RVO; Figure 2 C) describes the similarity between the response patterns in the memory area due
to the presentation of stimuli S1 and S1’:

RV O(S1, S1′) =
NM∑

i

Ri(S1) ·Ri(S1′) (S6)

with binary response of neuron i to a given stimulus X ∈ S1, S1′:

Ri(X) =

{
1, if Fi(X) > 0.5 · α,
0, else.

(S7)

Explicit network simulation results

Table S1. Explicit results depicted in Figure 2 A,B: average shortest path length (ASPL) and average synaptic weights (mean±std).

test0 test1 test2

w̄ff
11 107± 36 290± 11 302± 11

w̄ff
12 96± 22 145± 19 25± 15

w̄ff
21 95± 21 3.0± 0.1 15.0± 0.1

w̄ff
22 108± 36 103± 36 305.0± 0.0

w̄rec
1 19.4± 0.0 69± 10 81± 22

w̄rec
2 19.4± 0.0 17± 5 63± 20

w̄rec
RR 19.4± 0.0 25± 6 30± 11

ASPL S1 3.59± 0.02 1.81± 0.01 1.81± 0.02

ASPL S2 3.59± 0.02 3.55± 0.04 1.84± 0.04

SECTION B: NULLCLINES AND EQUILIBRIA
The equilibrium values w̄ff,∗

i and w̄rec,∗
i of the feed-forward and recurrent weights can be obtained as a

function of the equilibrium values of the population activities F̄ ∗i from Equation 10 and Equation 11:

w̄ff,∗
ik (F̄ ∗i ) =

√
κffF̄ ∗i Īk
F̄ ∗i − FT . (S8)

w̄rec,∗
i (F̄ ∗i ) =

√
κrec(F̄ ∗i )2

F̄ ∗i − FT , (S9)
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The equilibrium value ū∗inh of the membrane potential of the inhibitory population can be formulated as a
function of F̄ ∗1 and F̄ ∗2 based on Equation 8 (here, N1 = N2 = N ):

ū∗inh(F̄ ∗1 , F̄
∗
2 ) = Rinhτinh(winh,1N1F̄

∗
1 + winh,2N2F̄

∗
2 ). (S10)

By inserting Equations S9, S8 and S10 into Equation 7 and using F̄ ∗i = F (ū∗i ), we obtain a system of the
two population nullclines that only depends on the equilibrium values ū∗1 and ū∗2 (i ∈ {1, 2}):

0 = − ū
∗
i

τ
+R

(
n̄rec
i w̄rec,∗

i (F̄ ∗i )F̄ ∗i + wi,inhF̄
∗
inh(F̄ ∗1 , F̄

∗
2 ) +

∑
k

n̄ffw̄ff,∗
ik (F̄ ∗i )Īk

)
. (S11)

We solve this system numerically to receive the equilibrium values ū∗1 and ū∗2 and, in consequence, by
means of equations S8, S9 and S10, also w̄rec,∗

1 , w̄rec,∗
2 , w̄ff,∗

1A , w̄ff,∗
1B , wff,∗

2A , w̄ff,∗
2B and ū∗inh.

SECTION C: STABILITY
The stability of an equilibrium is determined by the sign of the eigenvalue with the largest real part of the
system’s Jacobi matrix evaluated at the equilibrium. The nonzero terms of the Jacobi matrix are (i ∈ {1, 2},
k ∈ {S1,S2}):

∂ ˙̄ui
∂ūi

= −1

τ
+Rn̄rec

i w̄lat
i
∂F̄i
∂ūi

,
∂ ˙̄ui
∂ūinh

= Rwi,inh
∂F̄inh

∂ūinh
,

∂ ˙̄ui
∂w̄rec

i

= Rn̄rec
i F̄i,

∂ ˙̄ui

∂w̄ff
ik

= Rn̄ff
i Īk,

∂ ˙̄uinh

∂ūi
= Rinhwinh,iNi

∂F̄i
∂ūi

,
∂ ˙̄uinh

∂ūinh
= − 1

τinh
,

∂ ˙̄wrec
i

∂ūi
= µrec∂F̄i

∂ūi

(
2F̄i −

(w̄rec
i )2

κrec

)
,

∂ ˙̄wrec
i

∂w̄rec
i

=
2µrec

κrec (FT − F̄i)w̄rec
i ,

∂ ˙̄wff
ik

∂ūi
= µff∂F̄i

∂ūi

(
Īk −

(w̄ff
ik)

2

κff

)
,

∂ ˙̄wff
ik

∂w̄ff
ik

=
2µff

κff (FT − F̄i)w̄ff
ik

with

∂F̄i
∂ūi

= βF̄i

(
1− F̄i

α

)
and

∂F̄inh

∂ūinh
= βF̄inh

(
1− F̄inh

α

)
.

The eigenvalues of the resulting matrix are determined numerically.

SECTION D: FEED-FORWARD SYNAPTIC WEIGHT CHANGE
For constant pre- and post-synaptic activities (Figure 5 D), Equation 10 can be solved analytically by
separation of variables. The resulting time-course wff

i (t) depends on the given parameters and initial
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conditions:

w̄ff
i (t) =



w̄ff,∗
i coth

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + arcoth
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) > wff,∗
i ∧ F̄ ff

i > FT ∧ Īi > 0,

w̄ff,∗
i tanh

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + artanh
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) < wff,∗
i ∧ F̄ ff

i > FT ∧ Īi > 0,

w̄ff,∗
i tan

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + arctan
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) < wff,∗
i ∧ F̄ ff

i < FT ∧ Īi > 0,(
1

w̄ff
i (t0)
− F T−F̄ ff

i

κff (t− to)µff
)−1

for F̄ ff
i = 0 ∨ Īi = 0

with

w̄ff,∗
i (F̄ ∗i ) =

√
κffF̄ ∗i Ī

FT − F̄ ∗i
.

SECTION E: COMPARISON OF BIFURCATION CURVE WITH NETWORK
SIMULATION
When comparing the equilibrium structure of the population model dependent on the input amplitude
(bifurcation parameter) with the equilibria reached in network simulations (Figure 5 C), the network
simulations are initialized close to the different expected stable configurations. For every input amplitude I ,
we perform two simulations with different initial conditions:

• wrec
ij = 0.25ŵrec for all realized recurrent synapses and wff

ij = ŵff for all realized feed-forward
synapses.

• wrec
ij = ŵrec for synapses in between 121 neurons in a circle-shaped population, wrec

ij = 0.25ŵrec for
all other realized recurrent synapses and wff

ij = ŵff for all realized feed-forward synapses.

In each case, the network is simulated for 50, 000 s. Every simulation is repeated 50 times with a different
random connectivity. To avoid simulation artifacts related to absolute silence of input channels, we assume
a small background activity of 0.1α for inactive inputs. In the final state, we either consider all neurons
with activity higher than 0.5α or, if there are none, 120 neurons centred around the activity center of the
network as population 1. Population 2 is defined as the circular group of 120 neurons with the highest
distance (respecting the periodic boundary conditions) to population 1. Within these two populations, we
evaluate the mean recurrent weights.

Input Amplitudes: In the network simulation, the functional role of the inhibitory population is two-fold:
On the one hand, inhibition mediates the competition between different populations. This role is also
captured by the population model. On the other hand, it prevents an active cell assembly from growing
without limit by inhibiting neighbouring neurons. This aspect is not reflected in the population model as in
the latter the size of the populations is approximated as being fixed. Due to this discrepancy, the population
model predicts equilibria also for very large input amplitudes while in the network simulation these input
amplitudes lead to full activation of the complete network.

SECTION F: ON THE CAPACITY LIMIT OF THE NETWORK
We discussed in the main text, that the HAs are not overlapping in our current circuit model. Considering
an average HA size of 120 neurons and an ideal use of the 900 neurons in the network, we can calculate the
theoretical capacity limit of b900/120c = 7 HAs. However, the circular shape of the HA will not allow for
an ideal packing density and we draw from our main investigations, that the allocation of HAs is mainly
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determined by the symmetry breaking conditions in the initial condition of a learning process (see main
text). The determination of the circuit’s capacity limit would require a large number of simulations that
include multiple memorization processes. In order to learn how HA allocation will function for more than
two stimuli and when the circuit will break down, we considered nine input patterns each consisting of
four input neurons. We presented the 9 stimuli each like described in the main article, i.e. 10 repetitions
for 5s with 1s pause. The resulting weight distributions before (test 0) and after each learning phase
(tests 1-9) are depicted in Figures S6 and S7. Test 0 shows that the initialization of the circuit bears no
obvious patterns in the feed-forward and homogeneous recurrent weights. The first 4 learning phases yield
expected results of 4 different circular HAs that do not overlap. HA interaction occurs for the first time
while learning the 5th stimulus (see test 5). HA5 recruits most of the neurons that were originally in HA1,
which is left with a small number of high recurrent connections (HA1). However, we cannot say that
HA5 and HA1 overlap, since it is not a double assignment of neurons to both HAs. The stimulus specific
feed-forward weights on HA5 are high for stimulus 5 only and the formerly high weights from stimulus
1 were depressed (data not shown). The small leftover of HA1 is still strongly connected to stimulus 1,
though (not shown). Test 6 shows a similar interaction of HA6 and HA3 although HA6 recruits only a
small fraction of HA3. Again, stimulus specific feed-forward weights reveal that it is not an overlap but
rather a capture or re-assignment of neurons to a new and exclusive memory representation (not shown). At
this point, the network is filled with nearly 5 fully formed HAs and leaves not much ’space’ for an average
sized circular HA without interacting with existing HAs. Indeed, also in the next learning phase, stimulus 7
is allocating its representation onto HA4 (see test 7) and captures nearly all of its neurons. In turn, HA7 is
largely captured by HA8 in the following learning phase and HA9 will capture HA8 completely further
on. Interestingly, we see that over the course of learning additional stimuli, the old HAs loose their strong
recurrent weights. Most prominently we can observe it during the last three learning phases (see test 7, 8,
9). This forgetting of old memory representation may be prevented by diverse consolidation mechanisms
(Clopath et al., 2008; Tetzlaff et al., 2013).

SECTION G: ON STIMULUS VARIATIONS
The main text discussed the reliability of memory recall with respect to stimulus variations only in the
framework of two memorized stimuli. This implies that two HAs compete with each other about which
will be activated by the recall stimulus (Figure 2C). Here, we consider the recall dynamics given that the
circuit has stored only one HA, to address two different recall protocols: (1) variation of stimulus disparity
(like in Figure 2C) to investigate noise robustness and (2) variation of stimulus size. The results are shown
in Figure S8 (A, B, respectively), where the response to a stimulus is measured in active neurons, that
is neurons above 0.5 · αrec. Each stimulus variation is compared to the circuit’s response related to the
specific original learning stimulus and the resulting overlap i of active neurons being active in both cases is
shown in green. We show data of n = 10 individual trials.

In the first case we present noisy versions of the original stimulus; thus, a higher level of disparity
indicates a noisier stimulus. In general, we observe that major parts of the HA are responsive to a wide
range of disparity levels and a sharp drop to close-to-none response at about 50% disparity. This is in
accordance with our expectations towards the pattern completion characteristics of an HA after storing two
HAs (see main text). The sudden non-responsiveness means that the existing HA is not favorable over the
remaining neurons in network. Thus, probably the alienated stimulus will initiate the formation of a second
HA similar to what we described in the main text.

In the second protocol - varied stimulus sizes - we present a partial stimulus of the original one to the
system and tested the response for different sizes. An intuitive interpretation of the protocol is partially
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occluded or extended variants of the original stimulus (see schematics above the data depiction). We
observe close to no response for small stimuli up to half of the original stimulus’ size followed by a shard
onset of most of the original HA, which converges towards the response levels of the original stimulus. So
far the data resembles the case of stimulus disparity and indicates a general pattern completion limit at
around 50% of stimulus disparity or similarity. Further extension of stimulus size keeps this level and does
not increase the size of response.

SECTION H: COMPARISON WITH BCM PLACTICITY RULE
In the main text our model is based on the combination of Hebbian synaptic plasticity and synaptic scaling.
In the following, we focus on the BCM rule (Bienenstock et al., 1982), which is widely-used in diverse
learning contexts (e.g. reviewed in Cooper and Bear, 2012). We used the BCM rule as formalized in Dayan
and Abbott (2001) such that the corresponding set of differential equations for the dynamics of the synaptic
weights and the sliding thresholds Θff/rec are the following:

dwff
i,k

dt
= µff · FiIk

(
Fi −Θff

i

)
,

dΘff
i

dt
= µff

Θ ·
(
F 2

i −Θff
i

)
,

dwrec
i,k

dt
= µrec · FiFk (Fi −Θrec

i ) ,

dΘrec
i

dt
= µff

Θ ·
(
F 2

i −Θrec
i

)
.

We presented the stimulus protocol, we applied in the main text, using the same parameter values. For
the two new parameters µff

Θ and µrec
Θ , the time constant of the sliding threshold’s metaplasticity, we chose

a common relative factor c such that µff
Θ = c · µff and µrec

Θ = c · µrec. Since the dynamics of the sliding
threshold has to be faster than the synaptic dynamics to guarantee non-divergent network dynamics (Yger
and Gilson, 2015), we choose c equals 10 or 20. Figures S9 & S10 show excerpts from the first learning
phase at t = 5s, 15s, 25s and 50s. We see that for c = 10 as well as c = 20 neither significant activation, nor
significant synaptic weight changes (feed forward or recurrent) can be observed. We spared the second
learning phase as the dynamics are similar.
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SECTION G: SUPPLEMENTARY FIGURES
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Figure S1. Indexing of neurons in sub-plots and topology. Indexing of neurons and recurrent connecti-
vity in the memory area. (A): The neurons are arranged on a 30x30-grid with indices running from left-top
to right-bottom such that each dot in sub-plots of Figure 3 and Figure 4 indicate properties of one neuron.
(B): Each neuron is connected to its neighbours, if the position of the neighbouring neuron is within a
circle of radius 4 (measured in neuronal units; see two circles as examples). Periodic boundary conditions
are introduced to avoid boundary and finite-size effects.
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Figure S2. All synaptic weights of feed-forward and recurrent connections. Raw data of the weights
of (top) feed-forward and (bottom) recurrent synapses (left) before learning, (middle) after the first learning
phase, and (right) after the second learning phase for one system initiation. Indices of neurons in the
memory area are sorted according to formed HAs (blue and red shading) while indices of neurons in the
input area are sorted according to their input-affiliation (blue and red boxes).
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Figure S3. The robustness of HA formation according to parameter variations. The formation of a
cell assembly is robust against changes in the velocity of synaptic adaptations of the feed-forward (µff;
Equation 5) and of the recurrent synapses (µrec; Equation 6). Given one learning phase, (A) ASPL (between
the 10 mostly active neurons) as well as (B) average recurrent synaptic weights within the HA indicate
that a HA is formed for a wide range of time scale ratios (rµ = µrec/µff). Please note that a low ASPL
(≈ 1.8; A, red line) and a significant increase of the average recurrent synaptic weight above the initial
mean value (0.25; B, red line) indicate a proper formation of a HA. In the main text, synaptic changes of
both types of synapses (feed-forward as well as recurrent) occur with the same time scale µff = µrec = µ.
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Figure S4. Parameter estimation for population model. Some parameters of the population model are
estimated from the full network model. Each panel shows the histogram of a parameter from 1000 different
network initializations. Average values are given as mean±standard deviation. (A): numbers of neurons
within the first formed HA, with average N̄HA = 120±4. (B): average number of feed-forward connections
per HA-neuron from the active input population I1 to corresponding HA, with average n̄ff = 2.37± 0.07.
(C): average number of recurrent connections each neuron within the first formed HA receives from other
neurons in the same HA, with average n̄rec = 33.8± 0.4).
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Figure S6. Testing capacity limit - tests 0 to 4. For details see section F.
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Figure S7. Testing capacity limit - tests 5 to 9. For details see section F.
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Figure S8. Variation of stimulus disparity & size. For details see section G.
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Figure S9. Dynamics given the BCM rule. Color bar scaling equal to the one in Figure 3, except for last
row (maximum had to be adapted for better visibility of small values). For details see section H. c = 10.
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Figure S10. Dynamics given the BCM rule. Color bar scaling equal to the one in Figure 3, except for
last row (maximum had to be adapted for better visibility of small values). For details see section H. c = 20.
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