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Abstract

This text contains the Appendices to [1]. We discuss the Decoupling Formula in Appendix
1 and prove technical Proposition 3.7 and Proposition 3.9 from [1] in Appendices 2 and 3
correspondingly.

1 Appendix 1

Decoupling Formula is a valuable tool developed in the resolvent analysis of statistical properies of
random matrices.

Theorem 1.1 (Decoupling Formula). [3] Let ξ be a random variable such that E{|ξ|p+2} <∞ for
a certain nonnegative integer p. Then for any function f : R → C of the class Cp+1 with bounded
derivatives f (l), l = 1, ..., p+ 1, we have

E{ξf(ξ)} =

p∑
l=0

κl+1

l!
E{f (l)(ξ)}+ εp. (1.1)

where κl denotes the lth cumulant of ξ and the remainder term εp admits the bound

|εp| ≤ CpE{|ξ|p+2} sup
t∈R

f (p+1)(t), Cp ≤
1 + (3 + 2p)p+2

(p+ 1)!
. (1.2)

If ξ is a Gaussian random variable with zero mean,

E{ξf(ξ)} = E{ξ2}E{f ′(ξ)}. (1.3)
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2 Appendix 2

Below we prove Proposition 3.7 formulated in Section 3 of [1].

Proof. Since 〈xk, xq〉lr = 0 if k + q is odd, it follows by linearity that

〈Uγlk , U
γr
q 〉lr = 0, if k + q is odd. (2.1)

We begin by computing 〈( x
2
√
γl

)2k, Uγr2q 〉lr and 〈( x
2
√
γl

)2k+1, Uγr2q+1〉lr. We obtain

〈( x

2
√
γl

)2k, Uγr2q 〉lr

= (
1
√
γl

)2k〈x2k, Uγr2q (x)〉lr

= γ−kl

q∑
p=0

(−1)p(
1
√
γl

)2q−2p
(

2q − p
p

)
〈x2k, x2q−2p〉lr

=
γ−kl γ−qr

2k + 1

k∑
j=0

q−j∑
p=0

(−1)pγpl (2j + 1)2

2q − 2p+ 1

(
2k + 1

k + j + 1

)(
2q − p
p

)(
2q − 2p+ 1

q − p+ j + 1

)
γk−jl γq−p−jr γ2j+1

lr

=
1

2k + 1

k∑
j=0

(2j + 1)2
(

2k + 1

k + j + 1

)q−j∑
p=0

(−1)p(2q − p)!
p!(q − p+ j + 1)!(q − p− j)!

 γ−jl γ−jr γ2j+1
lr

(2.2)

and

〈( x

2
√
γl

)2k+1, Uγr2q+1〉lr

= (
1
√
γl

)2k+1〈x2k+1, Uγr2q+1(x)〉

= (
1
√
γl

)2k+1
q∑
p=0

(−1)p(
1
√
γr

)2q−2p+1

(
2q − p+ 1

p

)
〈x2k+1, x2q−2p+1〉lr

=
γ
− 1

2
l γ

− 1
2

r

2k + 2

k∑
j=0

q−j∑
p=0

(−1)pγpr (2j + 2)2

2q − 2p+ 2

(
2k + 2

k + j + 2

)(
2q − p+ 1

p

)(
2q − 2p+ 2

q − p+ j + 2

)
γ−jl γ−p−jr γ2j+2

lr

=
γ
− 1

2
l γ

− 1
2

r

2k + 2

k∑
j=0

(2j + 2)2
(

2k + 2

k + j + 2

)q−j∑
p=0

(−1)p(2q − p+ 1)!

p!(q − p+ j + 2)!(q − p− j)!

 γ−jl γ−jr γ2j+2
lr .

(2.3)

Denote by

H1(q, j) =

q−j∑
p=0

(−1)p(2q − p)!
p!(q − p+ j + 1)!(q − p− j)!

, (2.4)

H2(q, j) =

q−j∑
p=0

(−1)p(2q − p+ 1)!

p!(q − p+ j + 2)!(q − p− j)!
. (2.5)
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Then

〈( x

2
√
γl

)2k, Uγr2q 〉lr =
1

2k + 1

k∑
j=0

(2j + 1)2
(

2k + 1

k + j + 1

)
H1(q, j)γ

−j
l γ−jr γ2j+1

lr , (2.6)

〈( x

2
√
γl

)2k+1, Uγr2q+1〉lr =
γ
− 1

2
l γ

− 1
2

r

2k + 2

k∑
j=0

(2j + 2)2
(

2k + 2

k + j + 2

)
H2(q, j)γ

−j
l γ−jr γ2j+2

lr . (2.7)

It follows from (2.4-2.5) that

H1(q, j) =
(2q)!

(q − j)!(q + j + 1)!
= 2F1

(
−(q − j),−(q + j + 1)

−2q
; 1

)
, (2.8)

H2(q, j) =
(2q + 1)!

(q − j)!(q + j + 1)!
= 2F1

(
−(q − j),−(q + j + 2)

−(2q + 1)
; 1

)
, (2.9)

where 2F1 is a hypergeometric function. See [2] for the definition of hypergeometric functions.
Below let (x)n = x(x + 1) · · · (x + n − 1) denote the rising factorial. By the Chu-Vandermonde
identity (see e.g. [2]), it follows that

H1(q, j) =
(2q)!

(q − j)!(q + j + 1)!

(j − q + 1)q−j
(−2q)q−j

=

{
0 0 ≤ j < q

1
2q+1 j = q

(2.10)

H2(q, j) =
(2q + 1)!

(q − j)!(q + j + 2)!

(j − q + 1)q−j
(−2q − 1)q−j

=

{
0 0 ≤ j < q

1
2q+2 j = q

(2.11)

Therefore, for k = 0, 1, · · · , q−1, we get that 〈( x
2
√
γl

)2k, Uγr2q 〉lr = 0 and also 〈( x
2
√
γl

)2k+1, Uγr2q+1〉lr =

0. With k = q we obtain

〈( x

2
√
γl

)2k, Uγr2k 〉lr =
1

2k + 1

k∑
j=0

(2j + 1)2
(

2k + 1

k + j + 1

)
H1(k, j)γ

−j
l γ−jr γ2j+1

lr

=
(2k + 1)2

2k + 1

(
2k + 1

2k + 1

)
H1(k, k)γ−kl γ−kr γ2k+1

lr

=
γ2k+1
lr

γkl γ
k
r

(2.12)

and

〈( x

2
√
γl

)2k+1, Uγr2k+1〉lr =
γ
− 1

2
l γ

− 1
2

r

2k + 2

k∑
j=0

(2j + 2)2
(

2k + 2

k + j + 2

)
H2(k, j)γ

−j
l γ−jr γ2j+2

lr

= γ
− 1

2
l γ

− 1
2

r
(2k + 1)2

2k + 1

(
2k + 1

2k + 1

)
H2(k, k)γ−kl γ−kr γ2k+1

lr

=
γ2k+2
lr√

γlγr
2k+1

. (2.13)

Thus, for k < q,
〈Uγl2k, U

γr
2q 〉lr = 0, 〈Uγl2k+1, U

γr
2q+1〉lr = 0, (2.14)
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and for k = q

〈Uγl2k, U
γr
2k 〉lr = 〈( x

2
√
γl

)2k, Uγr2k 〉lr =
γ2k+1
lr

γkl γ
k
r

, (2.15)

〈Uγl2k+1, U
γr
2k+1〉lr = 〈( x

2
√
γl

)2k+1, Uγr2k+1〉lr =
γ2k+2
lr√

γlγr
2k+1

. (2.16)

This completes the proof of Proposition 3.7, which is the diagonalization part of Lemma 2.5 of
[1].

3 Appendix 3

Below we prove Proposition 3.9 formulated in Section 3 of [1].

Proof. First it will be argued by approximation that 〈·, ·〉lr can be extended to the class of functions
H 3

2
+ε, and then the bilinear form will be explicitly computed. It will be sufficient to approximate

f, g below by truncated polynomials with rational coefficients in H 3
2
+ε, because of the estimate

(3.3). Recall that functions of the Schwartz class are dense in Hs, so after a triangle inequality
argument it is in fact sufficient to suppose that f, g ∈ S(R). Let h ∈ C∞c be a function so that
h(x) = 1 for x ∈ [−3, 3], h(x) = 0 for x /∈ [−4, 4] and is smoothly interpolated in between. Note
that with overwhelming probability, the eigenvalues of the submatrices concentrate in the support
of µsc. As a consequence we may suppose that f, g are supported in [−3, 3]. We give a density
argument. It is sufficient to argue that ||hf − hpj || 3

2
+ε and ||hg− hqj || 3

2
+ε converge to 0 as j →∞,

where {pj}, {qj} are appropriately chosen sequences of polynomials with rational coefficients. Note
that hf = f and hg = g. We now focus on estimating ||f −hpj || 3

2
+ε. Since f is a Schwarz function,

we have that f ∈ H2. We note that∫ ∞
−∞
|f̂(t)|2 (1 + |t|)3+ε dt ≤

∫ ∞
−∞
|f̂(t)|2 (1 + |t|)4 dt, (3.1)

so it will be sufficient to approximate f in the larger || · ||2 norm. Also, since

||f ||22 =

∫ ∞
−∞
|f̂(t)|2 (1 + |t|)4 dt ≤ Const

[∫ ∞
−∞
|f̂(t)|2dt+

∫ ∞
−∞

t4|f̂(t)|2dt
]
, (3.2)

we only need to approximate the two terms on the right hand side. Consider polynomials {pj}
with rational coefficients so that sup−4≤x≤4 |f ′′(x) − pj(x)| → 0 as j → ∞. Then denote by

p̃j(x) =
∫ x
−4 pj(t)dt, and ˜̃pj(x) =

∫ x
−4 p̃j(t)dt. As a consequence of Parseval’s theorem, it will be

sufficient to show that

||f − h ˜̃pj ||L2([−4,4]) → 0 and ||f ′′ − (h ˜̃pj)
′′||L2([−4,4]) → 0, as j →∞. (3.3)

But observe that

||f ′′ − (h ˜̃pj)
′′||L2([−4,4]) ≤ ||f ′′ − hpj ||L2([−4,4]) + ||h′′ ˜̃pj + 2h′p̃j ||L2([−4,4]). (3.4)

The first term on the right hand side converges to 0 because of the uniform approximation.
Noting that h′(x) = 0 and h′′(x) = 0 on (−3, 3), and also that p̃j and ˜̃pj converge to 0 uniformly
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on [−4,−3) ∪ (3, 4], it follows that the second term on the right hand side converges to 0 as well.
Finally we observe that

||f − h ˜̃pj ||2L2([−4,4]) =

∫ 4

−4
|f(x)− h(x)˜̃pj(x)|2dx

≤
∫ 4

−4
h2(x)

∣∣∣∣∫ x

−4

∫ t

−4
[f ′′(u)− pj(u)]dudt

∣∣∣∣2 dx
≤ Const ·

(
sup
−4≤u≤4

∣∣f ′′(u)− pj(u)
∣∣)2

(3.5)

It follows that ||f − h ˜̃pj ||2L2([−4,4]) → 0 because of the uniform approximation. This completes the
approximation argument, so we now turn toward computing the bilinear form.

Setting

fk =
1

2πγl

∫ 2
√
γl

−2√γl
f(x)Uγlk (x)

√
4γl − x2dx, gk =

1

2πγr

∫ 2
√
γr

−2√γr
g(y)Uγrk (y)

√
4γr − y2dy, (3.6)

it follows that

〈f, g〉lr

= 〈
∞∑
k=0

fkU
γl
k (x),

∞∑
p=0

gpU
γr
p (x) 〉lr

=
∞∑
k=0

∞∑
p=0

fkgp〈Uγlk , U
γr
p 〉lr

=
∞∑
k=0

fkgk
γk+1
lr

γ
k/2
l γ

k/2
r

=
1

4π2γlγr

∫ 2
√
γl

−2√γl

∫ 2
√
γr

−2√γr
f(x)g(y)

[ ∞∑
k=0

Uγlk (x)Uγrk (y)
γk+1
lr

γ
k/2
l γ

k/2
r

]√
4γl − x2

√
4γr − y2dydx.

It also follows, using (3.140), that a.s.

lim
n→∞

1

n
Tr
{
P (l)f(M (l)) · P (l,r) · g(M (r))P (r)

}
=

1

4π2γlγr

∫ 2
√
γl

−2√γl

∫ 2
√
γr

−2√γr
f(x)g(y)

[ ∞∑
k=0

Uγlk (x)Uγrk (y)
γk+1
lr

γ
k/2
l γ

k/2
r

]√
4γl − x2

√
4γr − y2dydx.

(3.7)

Proposition 3.9 follows.
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