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Abstract

This text contains the Appendices to [I]. We discuss the Decoupling Formula in Appendix
1 and prove technical Proposition 3.7 and Proposition 3.9 from [I] in Appendices 2 and 3
correspondingly.

1 Appendix 1

Decoupling Formula is a valuable tool developed in the resolvent analysis of statistical properies of
random matrices.

Theorem 1.1 (Decoupling Formula). [3] Let & be a random variable such that E{|£[PT2} < oo for
a certain nonnegative integer p. Then for any function f : R — C of the class CP*1 with bounded
derivatives f(l),l =1,....,p+ 1, we have

E{6/(6)} = Y “HE{fD(©)} +5p. (1.1)
=0

where k; denotes the [th cumulant of § and the remainder term €, admits the bound

1+ (34 2p)Pt?
(p+1)!

lepl < CpE{\gyp“}igg FEEE), Gy < (1.2)

If ¢ is a Gausstan random variable with zero mean,

E{£f(6)} = E{¢*}E{f"(©)}- (1.3)
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2 Appendix 2
Below we prove Proposition 3.7 formulated in Section 3 of [I].
Proof. Since (zF, x9);, = 0 if k 4 ¢ is odd, it follows by linearity that
(UM U ) =0, if k+ g is odd. (2.1)

We begin by computing ((5%=)?", Uy )i, and ((5%=)*"*1, U5, 1)ir. We obtain
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where 9F) is a hypergeometric function. See [2] for the definition of hypergeometric functions.
Below let (z), = x(z 4+ 1)---(x + n — 1) denote the rising factorial. By the Chu-Vandermonde
identity (see e.g. [2]), it follows that

N (29)! (J—g+1)g [0 0<j<gq

Hled) = g 5+ 1) (—20)q—j { Crem] i=4q (2.10)
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Therefore, for k =0,1,--- ,g—1, we get that <(2\%)2k, Uz )ir = 0 and also <(2Lﬁ)2k+1, Uger1)ir =
0. With k£ = g we obtain
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Thus, for k£ < g,
<U27127U27¢;>lr:07 <U;li+17U2q+1> =0, (2~14)
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This completes the proof of Proposition 3.7, which is the diagonalization part of Lemma 2.5 of
. O

(2.15)

3 Appendix 3

Below we prove Proposition 3.9 formulated in Section 3 of [IJ.

Proof. First it will be argued by approximation that (-, );. can be extended to the class of functions
M3, ., and then the bilinear form will be explicitly computed. It will be sufficient to approximate
2
[, g below by truncated polynomials with rational coefficients in Hs_ ., because of the estimate
2

(3.3). Recall that functions of the Schwartz class are dense in Hg, so after a triangle inequality
argument it is in fact sufficient to suppose that f,g € S(R). Let h € C° be a function so that
h(z) =1 for z € [-3,3], h(x) = 0 for x ¢ [—4,4] and is smoothly interpolated in between. Note
that with overwhelming probability, the eigenvalues of the submatrices concentrate in the support
of pse. As a consequence we may suppose that f, g are supported in [—3, 3]. We give a density
argument. It is sufficient to argue that ||hf — hpj||%Jre and ||hg — hqj||%+E converge to 0 as j — oo,
where {p;},{q;} are appropriately chosen sequences of polynomials with rational coefficients. Note
that hf = f and hg = g. We now focus on estimating ||f — hpj||%+€. Since f is a Schwarz function,
we have that f € Ho. We note that

/ @ (1 [¢)*dt < / @)1 (1 +[e)* dt, (3.1)
so it will be sufficient to approximate f in the larger || - ||2 norm. Also, since
1= [ 1FOF Qi) ar < const | [~ (opars [T difopa] . o)

we only need to approximate the two terms on the right hand side. Consider polynomials {p;}
with rational coefficients so that sup_,<,<4 |f"(x) — pj(z)] — 0 as j — oo. Then denote by
pj(x) = ff4 p;(t)dt, and 5](33) = ff413j(t)dt. As a consequence of Parseval’s theorem, it will be
sufficient to show that
| f = hpjl|2(—aay) — O and [[f” — (hp;)" || r2(a,ap) = 0, as j — oo. (3.3)
But observe that

" = (h5) Npeeaay < 1" = hoillreeaay + IB'Ds + 20 Bjll 2(—a.ap)- (3.4)

The first term on the right hand side converges to 0 because of the uniform approximation.
Noting that h/(z) = 0 and h”(x) = 0 on (—3,3), and also that p; and p; converge to 0 uniformly

4



n[—4,-3)U
Finally we observe that
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It follows that ||f — hﬁj||%2([_4,4])

—4<u<4

(3,4], it follows that the second term on the right hand side converges to 0 as well.
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— 0 because of the uniform approximation. This completes the

approximation argument, so we now turn toward computing the bilinear form.

Setting
1 2W 1

Uﬁl WAy — 22dx, g, =

= ﬂ
it follows that
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It also follows, using (3.140), that a.s.
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Proposition 3.9 follows.
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