Supplementary Materials for

An Integrated Quantitative Proteomics Workflow for Cancer Biomarker Discovery and Validation in Plasma

Vipin Kumar¹, Sandipan Ray^{1, 2}, Saicharan Ghantasala¹, Sanjeeva Srivastava¹*

¹Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay,

Mumbai 400076, India

²Present address: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

*Correspondence: Dr. Sanjeeva Srivastava, E-mail: sanjeeva@iitb.ac.in

Phone: +91-22-2576-7779, Fax: +91-22-2572-3480

This file includes

Supplementary method 1

Supplementary method 2

Supplementary method 3

Supplementary Figures

Figure S1 | Steps involved in the preparation of the C18 desalting tip.

Figure S2 | Creating a data-dependent method using Thermo Xcalibur software.

Figure S3 | LC and MS parameters used for label-free quantitation.

Figure S4 | Peptide settings for Multiple Reaction Monitoring and Parallel

Reaction Monitoring using Skyline.

Figure S5 | Transition settings for Multiple Reaction Monitoring and Parallel

Reaction Monitoring using Skyline

Figure S6 | (**A**, **B**) Procedure for exporting the list of peptides for Multiple Reaction Monitoring (**A**) and Parallel Reaction Monitoring (**B**) experiment.

Figure S7 | Method Parameters for Multiple Reaction Monitoring experiment on TSQ Altis.

Figure S8: Method parameters for the Parallel Reaction Monitoring experiment on Orbitrap Fusion.

Figure S9 | Data analysis using Skyline. (**A**) Importing the result files into the Skyline document. (**B**) Steps to view the retention time of peptides.

Figure S10 | **(A)** The gradient used for a 2-hour separation through liquid chromatography. **(B)** Correlation analysis of the technical replicates of three different biological pools of plasma samples.

Figure S11 | The total no. proteins which has a coefficient of variation of less than 20% and 10% in each of the iTRAQ 4-plex labels- 114, 115, 116, and 117 after applying 1% FDR. The number of labelled peptides varied across the iTRAQ reagents.

Figure S12 | Targeted proteomics using MS-based approaches. (**A, B**) Workflow for Multiple Reaction Monitoring (MRM), this approach considers the transitions of the peptide (**A**) and Parallel Reaction Monitoring (PRM), this approach considers only selection of peptides (**B**). It is independent of transitions.

Figure S13 | The abundance profile of alpha-1B-glycoprotein in the pooled samples (iTRAQ experiment) and individual samples (TMT, MRM, and PRM experiments) using different proteomic techniques. The y-axis represents the abundance in Log₂, and the x-axis represents samples used in iTRAQ, TMT, MRM, and PRM experiments. The protein abundance of alpha-1B-glycoprotein is the average abundance of three peptides (R.SGLSTGWTQLSK.L, R.CEGPIPDVTFELLR.E, and R.TPGAAANLELIFVGPQHAGNYR.C) in case of MRM and PRM experiments. P: Pooled sample, S: individual sample.

Figure S14 | The abundance profile of vascular cell adhesion protein 1 in label-free quantitation (LFQ), iTRAQ-4plex, TMT-6plex, and MRM experiments. The y-axis represents the abundance in Log₂, and the x-axis represents samples used in LFQ, iTRAQ-4plex, and TMT-6plex experiments. S: Plasma sample.

Supplementary Tables

Table S1 | (**Microsoft Excel format**). The list of identified proteins in label-free quantitation experiment.

Table S2 | (Microsoft Excel format). The list of identified proteins in iTRAQ 4-plex experiment.

Table S3 | (Microsoft Excel format). The list of identified proteins in TMT 6-plex experiment.

Supplementary method 1

Material

Biological Materials

1. Blood

CAUTION In this study, the collection of blood samples was done at the Calcutta Medical College, Kolkata, India. Prior to the sample collection process, written informed consent was received from each participant after giving detailed explanations about the experimental procedure in the language best understood by the potential participants. This study was approved by the institutional review boards and ethics committee of the Indian Institute of Technology Bombay (IITB-IEC/2016/026). Human Body fluids should be handled in a Biosafety level 2 environment.

Reagents

- Pierce™ Top 12 Abundant Protein Depletion Spin Columns (Thermo Fisher Scientific, cat no. 85165)
- 2. Quick Start Bradford Protein Assay Kit (BioRad, cat. no. 5000205) **CRITICAL** Please go through the manufacturer's instruction to check the compatibility of the reagent.
- 3. Urea (Sigma-Aldrich, cat. no. U0631) **CAUTION** It is a health hazard level 2 compound.

 Use gloves and avoid direct contact with skin and eyes.
- 4. Ammonium bicarbonate (Sigma-Aldrich, cat. no. 09830)
- 5. Tris (2-carboxyethyl) phosphine hydrochloride solution, 0.5 M, pH 7.0 (aqueous solution; pH was adjusted with ammonium hydroxide) (Sigma life Science, cat. no. 646547-10X1ML) CAUTION It is health hazard level 2, 2A and 3 compounds. Use gloves and avoid direct contact with skin and eyes.

- 6. Iodoacetamide (Sigma-Aldrich, cat. no. A3221)
- 7. PierceTM trypsin protease, MS Grade (Thermo Fisher Scientific, cat. no. 90057)
- 8. EmporeTM Octadecyl C18 47mm Extraction Disks (cat no. 66883-U)
- 9. iTRAQ® Reagents 4-plex (SCIEX, PN 4374321)
- 10. TMT 6-plexTM Isobaric Label Reagent Set, 1 x 0.8 mg (Thermo ScientificTM, cat no. 90061)
- 11. Pierce™ High pH Reversed-Phase Peptide Fractionation Kit (Thermo Scientific™, cat no. 84868)
- 12. Acetonitrile: OptimaTM LC/MS grade (cat. no. A9554) **CAUTION** Flammable liquid and vapor. Irritating to eyes. May cause skin and respiratory tract irritation.
- 13. Methanol: Optima[™] LC/MS grade, (cat. no. A456-500) **CAUTION** Flammable liquid and vapor. Irritating to eyes. May cause skin and respiratory tract irritation.
- 14. Formic Acid: LC-MS Ultra (Sigma-Aldrich; cat. no. 14265)

Equipment

- 1. Mini_PROTEAN® Tetra Cell and Systems (BioRad, cat no. 1658000)
- 2. Liquid chromatography: EASY-nLC 1200 (Thermo Fisher Scientific)
- 3. Mass spectrometer: Orbitrap Fusion and TSQ Altis (Thermo Fisher Scientific)
- Pre-column: Acclaim[™] PepMap[™] 100 C18 HPLC Columns, 5 μm, 100 μm I.D. x 2 cm, nanoViper (Thermo Fisher Scientific, P/N 164564, S/N 10694527)
- 5. Analytical Column: PepMap RSLC C18, 2 μ m, 75 μ m x 50 cm (Thermo Fisher Scientific, P/N ES803A, S/N 10918620)
- 6. Thermo Scientific SPEEDVAC Savant SpeedVac Kit ISS110 P1
- 7. SmartSpecTM Plus Spectrophotometer (BioRad, cat. no. 170-2525)
- 8. Multiskan GO (Thermo Fisher Scientific, cat. no. N10588)

- 9. Micro-centrifuge capable of operating at 1000 ×g
- 10. End-over-end mixer
- 11. BD Vacutainer® PSTTM (cat no. 367960)

Reagent setup

- 1. Plasma digestion buffer: Prepare a 100 mm ammonium bicarbonate solution at pH 8.0 by adding 3.953 g of ammonium bicarbonate to 11 of milli-Q-water.
- 2. 6 M urea: Prepare 6 M urea by adding 3.6 g of urea to 10 ml of 100 mm ammonium bicarbonate buffer.
- Solvent for desalting column, Solvent 1, for eluting the peptides, is 40% (v/v) acetonitrile.
 Solvent 2, for eluting the peptides, is 50% (v/v) acetonitrile.
 Solvent 3, for eluting the peptides, is 60% (v/v) acetonitrile.
- 4. Solvents for nLC, Solvent A 0.1% (v/v) formic acid in water, Solvent B 80% (v/v) acetonitrile in 0.1% (v/v) formic acid

Supplementary method 2

Chromatography Gradients

The liquid chromatography gradient used for label-free quantitation (LFQ) experiment is shown below. It summarizes the time duration for solvent B at different intervals of time with flow rate of 300 nl/min (Step 39).

Time [mm:ss]	Duration [mm:ss]	Flow [nl/min]	Mixture [%B]
00:00	00:00	300.00	02.00
05:00	05:00	300.00	05.00
75:00	70:00	300.00	25.00
105:00	30:00	300.00	45.00
115:00	10:00	300.00	95.00
120:00	05:00	300.00	95.00

The liquid chromatography gradient used for the label-based quantitation (iTRAQ 4-plex) experiment is shown below. It summarizes the time duration for solvent B at different intervals of time with flow rate of 300 nl/min (Step 40).

Time [mm:ss]	Duration [mm:ss]	Flow [nl/min]	Mixture [%B]
00:00	00:00	300.00	00.00
10:00	10:00	300.00	05.00
120:00	110:00	300.00	30.00
170:00	50:00	300.00	65.00
175:00	05:00	300.00	90.00
180:00	05:00	300.00	90.00

The liquid chromatography gradient used for the label-based quantitation (TMT 6-plex) experiment is shown below. It summarizes the time duration for solvent B at different intervals of time with flow rate of 300 nl/min (Step 40).

Time [mm:ss]	Duration [mm:ss]	Flow [nl/min]	Mixture [%B]
00:00	00:00	300.00	00.00
04:00	04:00	300.00	05.00
62:00	58:00	300.00	25.00
80:00	18:00	300.00	50.00
83:00	03:00	300.00	90.00
90:00	07:00	300.00	90.00

The liquid chromatography gradient used for Multiple Reaction Monitoring (MRM) and Parallel Reaction Monitoring (PRM) experiment is shown below. It summarizes the time duration for solvent B at different intervals of time with flow rate of 300 nl/min (Step 41 and 42).

Time [mm:ss]	Duration [mm:ss]	Flow [nl/min]	Mixture [%B]
00:00	00:00	300.00	02.00
05:00	05:00	300.00	10.00
42:00	37:00	300.00	35.00
52:00	10:00	300.00	45.00
55:00	03:00	300.00	90.00
60:00	05:00	300.00	90.00

Supplementary method 3

OT-HCD-OT MS/MS Method The following MS parameters were used for the LFQ experiment (Step 39). The same parameters were used for the iTRAQ 4-plex/TMT 6-plex experiment instead of collision energy. In case of the iTRAQ 4-plex/TMT 6-plex MS method, the collision energy was set 35% (Step 40).

Method settings

Application mode: Peptide

Method duration (min): LFQ:120 mins, iTRAQ 4-plex:180 mins, TMT 6-plex: 90

mins/fraction

NSI source/gas parameters

Spray voltage: 1900 V

Capillary temperature: 275°C

Sheath gas: 0

Auxiliary gas: 0

MS global settings

Default charge state: 1

Internal mass calibration: Lock Mass (445.12003 m/z)

Experiment #1 [MS]

Start time (min): 0

End time (min): 120

Cycle time (sec): 3

MS OT

Detector type: Orbitrap

Resolution: 60,000

Mass range: Normal

Use quadrupole isolation: True

Scan range (m/z): 375-1700

RF lens (%): 60

AGC target: 4.0e5

Maximum injection time (ms): 50

Microscans: 1

Data type: Profile

Polarity: Positive

NCE: 28

Lock masses: 445.12003 m/z

Monoisotopic peak determination: Peptide

Charge state

Include charge state (s): 2-6

Include undetermined charge states: False

Include charge states 25 and higher: False

Dynamic exclusion

Exclude after n times: 1

Exclusion duration (s): 40

Mass Tolerance: ppm

Low: 10

High: 10

Exclude Isotopes: True

Perform a dependent scan on single charge state per precursor only: False

Intensity

Filter Type: Intensity Threshold

Intensity Threshold: 5.0e3

Data Dependent

Data Dependent Mode: Cycle Time Time between Master Scans (sec): 3

ddMS2 OT HCD

Isolation Mode: Quadrupole Isolation Window (m/z): 1.2

Isolation Offset: Off

Activation Type: HCD

Collision Energy (%): LFQ: 30, iTRAQ 4-plex/TMT 6-plex: 35

Detector Type: Orbitrap

Scan Range Mode: Auto: m/z Normal

Orbitrap Resolution: LFQ: 15000, iTRAQ 4-plex and TMT 6-plex: 30000

First Mass (m/z): 100 AGC Target: 1.0e4

Inject Ions for all available parallelizable time: True

Maximum Injection Time (ms): 30

Microscans: 1

Data Type: Centroid
Use EASY-ICtm: False

The following MS parameters were used for Multiple Reaction Monitoring (Step 41).

NSI Source/Gas parameters

Spray Voltage: 2200 V

Capillary Temperature: 300 °C

Sheath Gas: 0 Auxiliary Gas: 0

MRM parameters

Use cycle time (sec): 3

Use calibrated RF lens: True

Q1 Resolution (FWHM): 0.7

Q3 Resolution (FWHM): 0.7

CID Gas (mTorr): 2

Source Fragmentation (V): 0

Chromatographic Peak Width (sec): 30

Use Chromatographic Filter: False

Use retention time reference; False

Display retention time: false

Use quan ion: False

Show visualization: false

The following MS parameters were used for Parallel reaction monitoring (Step 42).

NSI Source/Gas parameters

Spray Voltage: 1900 V

Capillary Temperature: 275 °C

Sheath Gas: 0

Auxiliary Gas: 0

tMS² OT HCD

MSⁿ Level (n): 2

Multiplex Ions: False

Isolation Mode: Quadrupole

Isolation window (m/z): 1.2

Activation Type: HCD

HCD collision energy (%): 30

Stepped collision energy: false

Detector type: Orbitrap

Orbitrap resolution: 60000

Mass range: normal

Scan range (m/z): 350-1500

RF lens (%): 60

AGC Target: 1.0e5

Inject Ions for all available parallelizable time: False

Maximum Injection Time (ms): 118

Microscans: 1

Data Type: Centroid

Polarity: Positive

Use EASY-ICtm: False

Loop control: All

Figure S1 | Steps involved in the preparation of the C18 desalting tip.

Figure S2 | Creating a data-dependent method using Thermo Xcalibur software.

```
Thermo EASY-LC method print for Fusion
Sample pickup:
  Volume [\mul] : 3.00 Flow [\mul / min] : 5.00
Sample loading:
  Max. pressure [Bar] : 750.00
Gradient:
      Time [mm:ss]
                         Duration [mm:ss]
                                              Flow [nl/min] Mixture [%B]
             00:00
                                                       300.00
                                    00:00
                                                                          2.00
              05:00
                                    05:00
                                                       300.00
                                                                          5.00
              75:00
                                    70:00
                                                       300.00
                                                                         25.00
             105:00
                                    30:00
                                                       300.00
                                                                         45.00
             115:00
                                    10:00
                                                      300.00
                                                                         95.00
             120:00
                                    05:00
                                                      300.00
                                                                         95.00
Pre-column equilibration:
                     : 15.00
  Volume [µl]
  Flow [µl / min]
                       : (unspecified)
  Max. pressure [Bar] : 750.00
Analytical column equilibration:
  Volume [µl] : 10.00
Flow [µl / min] : (unspecified)
Max. pressure [Bar] : 750.00
Autosampler wash:
  Flush volume [µ1]
                     : 100.00
```


Figure S3 | LC and MS parameters used for label-free quantitation.

Figure S4 | Peptide settings for Multiple Reaction Monitoring and Parallel Reaction Monitoring using Skyline.

Prediction Filter Library Instrument	Full-Scan	Prediction Filter Library Instrument	Full-Scan	Prediction Filter Library Instrument Full-Scan
Precursor mass:	Product ion mass:	Peptides		lon match tolerance:
Monoisotopic ▼	Monoisotopic ▼	Precursor charges: Ion charge		0.05 m/z
		2.3	y,b	
Collision energy:	Declustering potential:			If a library spectrum is available, pick its most intense ions
None ▼	None ▼	Product ion selection		Pick:
		From:	To:	5 product ions
Optimization library:	Compensation voltage:	ion 2 ▼	last ion - 1 ▼	·
None ▼	None ▼			5 minimum product ions
		Special ions:		Eron filtered ion observes and tunes
		✓ N+terminal to Proline C+terminal to Glu or Asp Output Description Output Description Description Output Description Description Output Description Descript	Edit List	From filtered ion charges and types
Use optimization values when pre	esent	iTRAQ-114		From filtered ion charges and types plus filtered product ions
		iTRAQ-115		From filtered product ions
		iTRAQ-116	·	
		Precursor m/z exclusion window:		
		m/z		
		Auto-select all matching transition	s	
	Prediction Filter Library Inst	rument Full-Scan	Prediction Filter Library Inst	rument Full-Scan
	Min m/z:	Max m/z:	MS1 filtering	
	50 <i>m/z</i>	2000 m/z	Isotope peaks included:	Precursor mass analyzer:
	Dynamic min product m/z		Count ▼	Orbitrap ▼
	byrianiic miir product m/2			
	Method match tolerance m/z:		Peaks:	Resolving power: At:
	0.055 m/z		3	35,000 200 m/z
	Firmware transition limit:	Firmware inclusion limit:	Isotope labeling enrichment	:
			Default ▼	
			MS/MS filtering	
	Min time:	Max time:	Acquisition method:	Product mass analyzer:
	min	min	Targeted ▼	Centroided ▼
			Isolation scheme:	Mass Accuracy:
			▼	10 ppm
			Use high-selectivity extracti	on
			Retention time filtering	
			Use only scans within 5	minutes of MS/MS IDs
			Use only scans within 5	minutes of predicted RT
			 Include all matching scan 	s

Figure S5 | Transition settings for Multiple Reaction Monitoring and Parallel Reaction Monitoring using Skyline

Figure S6 | **(A,B)** Procedure for exporting the list of peptides for Multiple Reaction Monitoring **(A)** and Parallel Reaction Monitoring experiment **(B)**.

Figure S7 | Method Parameters for Multiple Reaction Monitoring experiment on TSQ Altis.

Figure S8 | Method parameters for the Parallel Reaction Monitoring experiment on Orbitrap Fusion.

Figure S9 | Data analysis using Skyline. **(A)** Importing the result files into the Skyline document. **(B)** Steps to view the retention time of peptides.

Figure S10 | **(A)** The gradient used for a 2-hour separation through liquid chromatography. **(B)** Correlation analysis of the technical replicates (R1, R2, R3) of three different biological pools of plasma samples (Sample A, B and C).

0.989

0.992

0.999

0.999

1.000

0.993

0.999

CR3

1.000

1.000

Figure S11 | The total no. proteins which has a coefficient of variation of less than 20% and 10% in each of the iTRAQ 4-plex labels- 114, 115, 116, and 117 after applying 1% FDR. The number of labeled peptides varied across the iTRAQ reagents.

Figure S12 | Targeted proteomics using MS-based approaches. (**A, B**) Workflow for Multiple Reaction Monitoring (MRM), this approach consider the transitions of the peptide (**A**) and Parallel Reaction Monitoring (PRM), this approach consider only selection of peptides (**B**). It is independent of transitions.

Figure S13 | The abundance profile of alpha-1B-glycoprotein in the pooled samples (iTRAQ experiment) and individual samples (TMT, MRM, and PRM experiments) using different proteomic techniques. The y-axis represents the abundance in Log₂, and the x-axis represents samples used in iTRAQ, TMT, MRM, and PRM experiments. The protein abundance of alpha-1B-glycoprotein is the average abundance of three peptides (R.SGLSTGWTQLSK.L, R.CEGPIPDVTFELLR.E, and R.TPGAAANLELIFVGPQHAGNYR.C) in case of MRM and PRM experiments. P: Pooled sample, S: individual sample.

Figure S14 | The abundance profile of vascular cell adhesion protein 1 in label-free quantitation (LFQ), iTRAQ-4plex, TMT-6plex, and MRM experiments. The y-axis represents the abundance in Log_2 , and the x-axis represents samples used in LFQ, iTRAQ-4plex, and TMT-6plex experiments. S: Plasma sample