Supplemental data for Yakimovich et al. 2020.

Table 1: Collection data on the samples that were sequenced. Samples taken at different depth profiles are indicated by sequential lettering in the "sample id" column (e.g. HOL18.25A was taken from the surface, and HOL18.25B was taken from just below HOL18.25A).

sample id	date	long	lat	elevation	mountain	sequencing	lysis
Sample lu	uate	long	101	elevation	mountain	run	method
	2018-07-		-				
BRE18.01	21	50.039471	123.18987	1673.3	Mount Brew	2	2
	2018-07-		-				
BRE18.02X	21	50.039336	123.19068	1678.5	Mount Brew	2	2
	2018-07-		-				
BRE18.10	21	50.039766	123.19066	1678.3	Mount Brew	2	2
	2018-07-		-				
BRE18.19	22	50.039402	123.19094	1681.5	Mount Brew	2	2
	2018-07-		-				
BRE18.RO	22	50.039402	123.19094	1680.9	Mount Brew	1	1
	2018-05-		-				
FRO18.09	16	49.38137	123.05699	1171	Mount Fromme	1	1
	2018-07-						
GAR18.01	27	NA	NA	1600	Mount Garabaldi	1	1
	2018-07-						
GAR18.01	27	NA	NA	1600	Mount Garabaldi	2	2
	2018-07-		-				
GAR18.02	27	49.826167	122.96373	1553.6	Mount Garabaldi	2	2
	2018-07-						
GAR18.04	27	NA	NA	1550	Mount Garabaldi	1	1
	2018-05-						
HOL18.13	14	NA	NA	900	Hollyburn Mountain	1	1
	2018-05-		-				
HOL18.18	14	49.387596	123.18828	891.5	Hollyburn Mountain	1	1
	2018-05-		-				
HOL18.21	18	49.398471	123.18404	1246.3	Hollyburn Mountain	2	2
	2018-05-		-				
HOL18.25A	18	49.396796	123.18253	1219.2	Hollyburn Mountain	1	1
	2018-05-		-				
HOL18.25B	18	49.396818	123.18257	1219.8	Hollyburn Mountain	1	1
	2018-05-		-				
HOL18.39D	23	49.398442	123.18406	1246.4	Hollyburn Mountain	1	1
	2018-06-		-				
HOL18.40	11	49.387843	123.18826	886.3	Hollyburn Mountain	1	1

	2018-06-		-				
HOL18.42	11	49.383601	123.18439	998.3	Hollyburn Mountain	1	1
	2018-06-		-				
HOL18.42b	11	49.383575	123.18439	998.3	Hollyburn Mountain	2	2
	2018-06-		-				
HOL18.47	14	49.380726	123.18737	958.7	Hollyburn Mountain	2	2
	2018-06-		-				
HOL18.49	14	49.384296	123.18251	1021.7	Hollyburn Mountain	1	1
	2018-06-		-				
HOL18.52	19	49.383597	123.18434	998.1	Hollyburn Mountain	1	1
	2018-07-		-				
HOL18.59	03	49.386621	123.18101	1058	Hollyburn Mountain	1	1
	2018-08-		-		Liberty Bell		
LIB18.01	06	48.515831	120.65631	1800	Mountain	1	1
	2018-07-		-				
NES18.01	14	49.033348	121.53303	1957.8	Nesakawatch Spires	2	2
	2018-07-		-				
NES18.02	14	49.033518	121.53312	1956.5	Nesakawatch Spires	1	1
	2018-07-		-				
NES18.03	14	49.034049	121.53376	1926.1	Nesakawatch Spires	2	2
	2018-09-		-				
PAN18.01	08	49.956464	123.00978	2048.70239	Panorama Ridge	1	1
	2018-09-		-				
PAN18.01r	08	49.956464	123.00978	2048.70239	Panorama Ridge	1	1
	2018-05-		-				
SEY18.07	22	49.387752	122.94252	1364.4	Mount Seymour	2	2
	2018-06-		-		-		
SEY18.22B	05	49.387693	122.94237	1366.9	Mount Seymour	1	1
	2018-06-		-		-		
SEY18.22C	05	49.387693	122.94237	1366.9	Mount Seymour	1	1
	2018-06-		-				
SEY18.25	05	49.383608	122.94175	1257.2	Mount Seymour	2	2
	2018-06-						
SEY18.26B	05	49.380193	-122.9421	1221.8	Mount Seymour	1	1
	2018-06-		-				
SEY18.30	05	49.375244	122.94642	1142.4	Mount Seymour	1	1
	2018-06-		-				
SEY18.38	14	49.37437	122.95023	1089.4	Mount Seymour	2	2
	2018-06-		-		,		
SEY18.43	14	49.387745	122.94233	1366.9	Mount Seymour	1	1
	2018-06-		-		,		
SEY18.63	28	49.375315	122.94636	1143.8	Mount Seymour	1	1

	2018-07-						
SEY18.63.5	04	49.380063	-122.942	1222.6	Mount Seymour	1	1
	2018-07-		-				
SEY18.65	04	49.384893	122.93831	1220.4	Mount Seymour	1	1
	2018-07-		-				
SEY18.65B	04	49.384893	122.93831	1220.4	Mount Seymour	1	1
	2018-07-		-				
SEY18.66	04	49.387693	122.94131	1382.1	Mount Seymour	2	2
	2018-07-		-				
SEY18.66B	04	49.387693	122.94131	1382.1	Mount Seymour	1	1
	2018-07-		-				
SEY18.74	19	49.386561	122.94191	1372	Mount Seymour	1	1
	2018-07-		-				
SEY18.74	19	49.386561	122.94191	1372	Mount Seymour	2	2
	2018-07-		-				
SEY18.75	19	49.387659	122.94141	1380.8	Mount Seymour	1	1
	2018-07-		-				
SEY18.75b	19	49.387659	122.94141	1380.8	Mount Seymour	1	1
	2018-05-		-				
SKY18.10	20	49.65132	123.08532	1135.9	Sky Pilot Mountain	1	1
	2018-05-		-				
SKY18.12	20	49.655358	123.10622	945.5	Sky Pilot Mountain	2	2
	2018-06-		-				
SKY18.14	20	49.635188	123.09231	1804.8	Sky Pilot Mountain	2	2
	2018-07-		-				
SKY18.15GB	07	49.645055	123.08717	1388.7	Sky Pilot Mountain	1	1
	2018-07-		-				
SKY18.15R	07	49.645055	123.08717	1388.7	Sky Pilot Mountain	1	1
	2018-07-		-				
SKY18.16Y	07	49.644212	123.08823	1400	Sky Pilot Mountain	1	1
	2018-07-		-				
SKY18.18	07	49.639713	123.09057	1654.3	Sky Pilot Mountain	1	1
	2018-07-		-				
SKY18.18SC	07	49.639713	123.09057	1654.3	Sky Pilot Mountain	1	1
	2018-07-		-				
SKY18.20	07	49.63924	123.09071	1666.7	Sky Pilot Mountain	2	2
	2018-07-						
SKY18.23	07	49.641645	-123.0924	1574.3	Sky Pilot Mountain	1	1
	2018-08-						
SKY18.24	26	49.636013	-123.0936	1771.65088	Sky Pilot Mountain	1	1
	2018-08-						
SKY18.24	26	49.636013	-123.0936	1771.65088	Sky Pilot Mountain	2	2

	2018-08-		-				
SKY18.27	26	49.636308	123.09119	1742.80481	Sky Pilot Mountain	2	2
	2018-06-		-				
STM18.01	09	49.428094	123.20676	1354	St. Marks Summit	1	1
	2018-06-		-				
STM18.01B	09	49.428094	123.20676	1354	St. Marks Summit	1	1
	2018-06-		-				
STM18.01C	09	49.428094	123.20676	1354	St. Marks Summit	1	1
	2018-06-		-				
TRI18.01	23	50.009583	123.25212	1699.3	Tricouni Peak	1	1
	2018-06-		-				
TRI18.03	23	50.005466	123.25743	1549.9	Tricouni Peak	2	2
	2018-06-		-				
TRI18.04	23	50.004854	123.25849	1550	Tricouni Peak	2	2
	2018-06-		-				
TRI18.06	23	49.993741	123.26299	1267.1	Tricouni Peak	1	1
	2018-08-		-				
WED18.01	13	50.150074	122.79696	2136	Wedge Mountain	2	2
	2018-08-		-				
WED18.02	13	50.150285	122.79655	2125	Wedge Mountain	2	2
	2018-08-		-				
WED18.05	13	50.151084	122.79599	2099	Wedge Mountain	1	1

Supplementary figures

Supplementary Figure 1: Heatmaps of bacteria (A) and eukaryote (B) ASVs that were at least 1% relatively abundant in the samples that were replicated with both cell lysis methods. The numbers on the x-axis indicate the cell lysis method and respective sequencing run the profile is from in each sample.

Supplementary Figure 2: NMDS plots of the 16S rDNA relative abundances with samples highlighted to contrast the two different lysis methods used. (A) and 18s rDNA (B) ASV relative abundances where each point represents a sample and they are grouped by which lysis method was done on it. The stress values are 0.2 (A) and 0.18 (B).

Supplementary Figure 3: NMDS and dbRDA plots of the bacterial 16S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the dominant algal genus found in that sample. Each sample was classified as either Chloromonas- or Sanguina-dominant, based on which genus was found in higher relative abundance.

Supplementary Figure 4: NMDS and dbRDA plots of the bacterial 16S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the colour of snow the sample was taken from.

Supplementary Figure 5: NMDS and dbRDA plots of the bacterial 16S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the elevation the sample was taken from.

Supplementary Figure 6: NMDS ordination of the 16S metabarcoding data from all 68 samples, and each point is colored by which mountain it was collected on. Stress value is 0.19.

Supplementary Figure 7: A heatmap of the relative abundances of the 7 widespread OTUS detected in each sample. Values of 0, where the OTU was undetected in a sample, are coloured white.

Supplementary Figure 8: NMDS and dbRDA plots of the bacterial fungal 18S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the colour of snow the sample was taken from.

Supplementary Figure 9: NMDS and dbRDA plots of the bacterial fungal 18S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the dominant algal genus found in each sample. Each sample was classified as either Chloromonas- or Sanguina- dominant, based on which genus was found in higher relative abundance.

Supplementary Figure 10: NMDS and dbRDA plots of the bacterial fungal 18S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the colour of snow the sample was taken from.

Supplementary Figure 11: NMDS and dbRDA plots of the protist/metazoan 18S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the colour of snow the sample was taken from.

Supplementary Figure 12: NMDS and dbRDA plots of the bacterial protist/metazoan 18S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the dominant algal genus found in each sample.

Supplementary Figure 13: NMDS and dbRDA plots of the bacterial protist/metazoan 18S relative abundances for ASVs and OTUs respectively. The dbRDAs were constrained by the colour of snow the sample was taken from.

Supplementary Figure 14: Hypothetical food web within the snow algae microbiome based on organisms and interactions seen in photomicrographs. Black arrows represent the flow of C to higher trophic levels, and the dotted lines represent hypothetical mutualistic feedback between trophic levels. Death and lysis of organisms that then feedback into the foodweb through decomposition by detritovores is represented here as "Detritus".