Supplementary Material

Salinity intrusion in a modified river-estuary system: an integrated modeling
framework for source-to-sea management

S1: Required River Discharges
The focus here was on low discharge conditions during which salinity extends farther up-

stream so the model was run with fixed values of river discharges Q, = 75m3s~1, 150m3s~1,
and 300m3s~* for 50 days after reaching an equilibrium to incorporate a representative range of
tidal forcing (Fig. S1). Solutions for salinity intrusions L, were obtained for each discharge case,
with the range of L for a given discharge due to tidal fluctuations. A relationship between intru-
sions and discharges was approximated by a power law, L, = BQ,", where g and y were param-
eters that governed the fit (Abood 1974; Monismith et al. 2002). The fitted relationship was used
to calculate a river discharge Q, that satisfied Pr(L, > 120km) = &. (Equivalently, a river dis-
charge equating to an exceedance of the salinity threshold at Poughkeepsie, §% of the time was

calculated.) The estimator was:

0. = (120—CI>Z§1—6)8 );17

where § and 7 are least squares estimates, & is an estimated residual variance, and ®(1 — &) is
the value of the standard normal distribution for which §% of the model solutions for L, have
been exceeded at Poughkeepsie.

A (1 — ) confidence interval for Q,- can be found through a non-parametric bootstrap
(Davison and Hinkley 1997). n;, i = 1, ..., m, values were sampled with replacement from the
salinity intrusions L, associated with each of the m flows from the model runs. The power law
was fitted to the bootstrapped dataset, and Q* was estimated. This procedure was repeated a large

number of times, and the estimated values of Q* were ordered. An approximate confidence in-



terval for Q was found by selecting the values of Q* that satisfied a/2 and (1 — a/2) percen-
tiles.

S2: Extreme-Value Theory Methodology

Consider the following representation. Let Z,, = max{X,, ..., X,,}, where X;, ..., X, are a
series of independent random variables with a common distribution function, F. The X;'s repre-
sent the daily river flow data, and Z,, corresponds to the maximum daily flow over n time units.
If n equals 365, then Z,, represents the annual maximum. Further, if the data are blocked into m
sequences of length n, generating a sequence of block maxima, Z,, 4, ..., Z,, n, then a Generalized
Extreme Value (GEV) distribution can be fitted.

The GEV distribution has the form:

G(z) = exp{—[1+¢ (Z£)]7/%)

defined on the set {z: 1+ @ > O} where —co < p < 00, —00 < & < o0, and o > 0. The mod-

el comprises a location parameter, u, a scale parameter, o, and a shape parameter, ¢é. The GEV
distribution corresponds to the Frechet family for ¢ < 0, the Gumbel family for ¢ = 0, and the
Weibull family for & > 0. The flexibility of the GEV distribution means that the user need not
select one of these three distributions a priori, instead allowing the data to determine the most
appropriate form.

From the fitted distribution, a return level

{u —z[1={-log=p)}*], for§ =0
Zy, =

u—alog{—log(1—p)}, for§ =20
is found with an associated return period. The level z, is exceeded by the annual maximum in

any particular year with probability p, implying a return period of 1/p years.



The parameters of the GEV are estimated by maximum likelihood, the log-likelihood for

the GEV when & # 0 is
(1,4,0) = ~mlogo — (1 +1/8) Xty log [1 + & ()] — zm, [+ £ (22)]
For 1 +§(%) >0, fori=1..,m

Andwhen & =0 is

I(p,0) = —mlogo — X%, (Zi;#) — Xiziexp {_ (%)}
Maximization is obtained using standard numerical optimization algorithms.

A (1 — a) confidence interval for the return period can be found through a parametric
bootstrap approach (Davison & Hinkley 1997). Simulate a sample of n;, i= 1, ..., m values from
the fitted GEV distribution with MLE parameters, 1, 6, £. Refit the GEV model to this boot-
strapped sample and estimate the return period based on the original 1995 level, z,,. Repeat the
procedure a large number of times. An approximate confidence interval for the return period is

found by selecting the bootstrapped values of return period that satisfy the /2 and (1 — a/

2) percentiles.



S2: Supplementary Tables and Figures

Table S1: Parameter estimates, return period estimates, and 95% confidence interval for return
period under a 30d drought.

) Return  95% CI for
Duration A ~ s

(d) K o ¢ period  return period
(¥) (v)
30 140.43 38.30 -0.451 20.28 [12.4,97.0]

Table S2: Expected, minimum, and maximum volumes of water (in millions of cubic meters) for
6 = 1% and 5% risk of salinity intrusion

Water Volume (million m®)

Expected Expected
volume Expected vol- increase
o) 95% CI ume for coun- 95% CI Min Max
for base- due to
. terfactual .
line dredging
1% 1061 [1028,1098] 1437 [1369,1505] 376 271 477
5% 883 [855,907] 1179 [1133,1225] 296 226 370
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Fig. S1 The simulated position (km), upstream of Upper NY Harbor, of a salinity threshold of
0.324 PSU in relation to Hudson River discharges, shown for the river’s 1995 (pre-
dredged) bathymetry. The salinity intrusion length, L,, was fitted using a power law to
Hudson River discharges, Q,, as simulated by a ROMS hydrodynamic model at flows of
75m3s?, 150m3s™, and 300m>s™. Observations at each level of discharge comprised tidal
variations in the ROMS model output.
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Fig. S2: Observed daily river flow (m*s™) during 1995 from the Green Island gauge, immediate-
ly upstream of the Troy Lock and Dam on the Hudson River (42°45'08"N,
73°41'20"W). The difference between Qo (dotted line) and Qane (dashed line) is the
estimated additional water required to be released from Great Sacandaga Lake under
the counterfactual a deepened channel in 1995).
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Fig. S3: Annual minima for transformed Hudson River flow data for r = 30d, constituting histor-
ical occurrences of a 30d drought.
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Fig. S4: (a) Great Sacandaga Lake elevation-volume relationship; (b) Great Sacandaga Lake and
Conklingville Dam (E.J. West hydropower facility) generating capacity-elevation rela-
tionship. Source: ORNL (2011).
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Fig. S5: Diagnostic (a) probability; ( b) quantile; and (c) density plots for the GEV fit for a 30d
drought.



Fig. S6:

$5.0 T 1.0%

S 40
& T $127
2 T 12
3 $30 Y
g A7TMm3
£ $20 ®25% @ 20y ® $68 376Mm® @ 8.8
[<5]
2 271Mm3
S $1.0
L + 7.0%
< 97y + $13
$0.0
Discount Drought SCC \ol A Markup

Ranges of estimates of expected present value of total loss (2018 $M) under the coun-
terfactual. Social discount rate (Discount; %); odds ratio representing expected years
between droughts (Drought; y); social cost of carbon (SCC; 2018 $); expected aug-
mented water release (Vol A; Mm?®); ratio of load-based marginal price of electricity in
NY State Electricity Zone J (a proxy for the marginal cost of replacement electric pow-
er) to the average operating and maintenance costs of hydropower (Markup; unitless).
Estimates for each parameter range were undertaken with all other parameters at their
central values.
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