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Supplementary Material 

Salinity intrusion in a modified river-estuary system: an integrated modeling 

framework for source-to-sea management 

S1: Required River Discharges 

The focus here was on low discharge conditions during which salinity extends farther up-

stream so the model was run with fixed values of river discharges 𝑄𝑟 = 75m3s−1, 150m3s−1,

and 300m3s−1 for 50 days after reaching an equilibrium to incorporate a representative range of

tidal forcing (Fig. S1). Solutions for salinity intrusions 𝐿𝑥 were obtained for each discharge case, 

with the range of Lx for a given discharge due to tidal fluctuations. A relationship between intru-

sions and discharges was approximated by a power law, 𝐿𝑥 = β𝑄𝑟
𝛾
, where 𝛽 and 𝛾 were param-

eters that governed the fit (Abood 1974; Monismith et al. 2002). The fitted relationship was used 

to calculate a river discharge �̂�𝑟 that satisfied Pr(𝐿𝑥 ≥ 120km) = 𝛿. (Equivalently, a river dis-

charge equating to an exceedance of the salinity threshold at Poughkeepsie, 𝛿% of the time was 

calculated.) The estimator was: 

�̂�𝑟 = (
120−Φ(1−𝛿)�̂�

�̂�
)

1
�̂�

where �̂�  and 𝛾 are least squares estimates, �̂� is an estimated residual variance, and  Φ(1 − 𝛿) is 

the value of the standard normal distribution for which 𝛿% of the model solutions for 𝐿𝑥 have 

been exceeded at Poughkeepsie.  

A (1 − 𝛼) confidence interval for 𝑄𝑟 can be found through a non-parametric bootstrap 

(Davison and Hinkley 1997). 𝑛𝑖, i = 1, …, m, values were sampled with replacement from the 

salinity intrusions 𝐿𝑥 associated with each of the m flows from the model runs. The power law 

was fitted to the bootstrapped dataset, and 𝑄∗̂ was estimated. This procedure was repeated a large

number of times, and the estimated values of  𝑄∗̂ were ordered. An approximate confidence in-
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terval for 𝑄 was found by selecting the values of  𝑄∗̂ that satisfied 𝛼/2  and (1 − 𝛼/2) percen-

tiles.  

S2: Extreme-Value Theory Methodology 

Consider the following representation. Let 𝑍𝑛 = 𝑚𝑎𝑥{𝑋1, … , 𝑋𝑛}, where 𝑋1, … , 𝑋𝑛 are a

series of independent random variables with a common distribution function, F. The 𝑋𝑖′𝑠 repre-

sent the daily river flow data, and 𝑍𝑛 corresponds to the maximum daily flow over n time units. 

If n equals 365, then 𝑍𝑛 represents the annual maximum. Further, if the data are blocked into m

sequences of length n, generating a sequence of block maxima, 𝑍𝑛,1, … , 𝑍𝑛,𝑚, then a Generalized 

Extreme Value (GEV) distribution can be fitted.  

The GEV distribution has the form: 

𝐺(𝑧) = 𝑒𝑥𝑝{−[1 + 𝜉 (
𝑧−𝜇

𝜎
)]−1 𝜉⁄ }

defined on the set {𝑧: 1 +
𝜉(𝑧−𝜇)

𝜎
> 0} where −∞ < 𝜇 < ∞, −∞ < 𝜉 < ∞, and 𝜎 > 0. The mod-

el comprises a location parameter, 𝜇, a scale parameter, 𝜎, and a shape parameter, 𝜉. The GEV 

distribution corresponds to the Frèchet family for 𝜉 < 0, the Gumbel family for 𝜉 = 0, and the 

Weibull family for 𝜉 > 0. The flexibility of the GEV distribution means that the user need not 

select one of these three distributions a priori, instead allowing the data to determine the most 

appropriate form.  

From the fitted distribution, a return level 

𝑧𝑝 = {
𝜇 −

𝜎

𝜉
[1 − {−𝑙𝑜𝑔(1 − 𝑝)}−𝜉], 𝑓𝑜𝑟 𝜉 ≠ 0

𝜇 − 𝜎𝑙𝑜𝑔{−𝑙𝑜𝑔(1 − 𝑝)}, 𝑓𝑜𝑟 𝜉 = 0

is found with an associated return period. The level 𝑧𝑝 is exceeded by the annual maximum in 

any particular year with probability p, implying a return period of 1/p years. 
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The parameters of the GEV are estimated by maximum likelihood, the log-likelihood for 

the GEV when 𝜉 ≠ 0 is 

𝑙(𝜇, 𝜉, 𝜎) = −𝑚𝑙𝑜𝑔𝜎 − (1 + 1 𝜉⁄ ) ∑ 𝑙𝑜𝑔 [1 + 𝜉 (
𝑧𝑖−𝜇

𝜎
)] − ∑ [1 + 𝜉 (

𝑧𝑖−𝜇

𝜎
)]

−1 𝜉⁄
𝑚
𝑖=1

𝑚
𝑖=1

For 1 + 𝜉 (
𝑧𝑖−𝜇

𝜎
) > 0, 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 

And when 𝜉 = 0 is 

𝑙(𝜇, 𝜎) = −𝑚𝑙𝑜𝑔𝜎 − ∑ (
𝑧𝑖−𝜇

𝜎
) − ∑ 𝑒𝑥𝑝 {− (

𝑧𝑖−𝜇

𝜎
)}𝑚

𝑖=1
𝑚
𝑖=1  

Maximization is obtained using standard numerical optimization algorithms. 

A (1 − 𝛼) confidence interval for the return period can be found through a parametric 

bootstrap approach (Davison & Hinkley 1997). Simulate a sample of 𝑛𝑖, i= 1, …, m values from 

the fitted GEV distribution with MLE parameters, �̂�, �̂�, 𝜉. Refit the GEV model to this boot-

strapped sample and estimate the return period based on the original 1995 level, 𝑧𝑝. Repeat the 

procedure a large number of times. An approximate confidence interval for the return period is 

found by selecting the bootstrapped values of return period that satisfy the 𝛼/2 and (1 − 𝛼/

2) percentiles.
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S2: Supplementary Tables and Figures 

Table S1:  Parameter estimates, return period estimates, and 95% confidence interval for return 

period under a 30d drought. 

Table S2: Expected, minimum, and maximum volumes of water (in millions of cubic meters) for 

𝛿 = 1% and 5% risk of salinity intrusion 

Duration 

(d) 
�̂� �̂� 𝜉

Return 

period 

(y) 

95% CI for 

return period 

(y) 

30 140.43 38.30 -0.451 20.28 [12.4,97.0] 

Water Volume (million m
3
)

𝛿 

Expected 

volume 

for base-

line 

95% CI 

Expected vol-

ume for coun-

terfactual 

95% CI 

Expected 

increase 

due to 

dredging 

Min Max 

1% 1061 [1028,1098] 1437 [1369,1505] 376 271 477 

5% 883 [855,907] 1179 [1133,1225] 296 226 370 
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Fig. S1  The simulated position (km), upstream of Upper NY Harbor, of a salinity threshold of 

0.324 PSU in relation to Hudson River discharges, shown for the river’s 1995 (pre-

dredged) bathymetry. The salinity intrusion length, 𝐿𝑥, was fitted using a power law to 

Hudson River discharges, 𝑄𝑟, as simulated by a ROMS hydrodynamic model at flows of 

75m
3
s

-1
, 150m

3
s

-1
, and 300m

3
s

-1
. Observations at each level of discharge comprised tidal

variations in the ROMS model output. 
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Fig. S2:  Observed daily river flow (m
3
s

-1
) during 1995 from the Green Island gauge, immediate-

ly upstream of the Troy Lock and Dam on the Hudson River (42°45'08"N, 

73°41'20"W). The difference between �̂�post (dotted line) and �̂�ante (dashed line) is the 

estimated additional water required to be released from Great Sacandaga Lake under 

the counterfactual a deepened channel in 1995). 
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Fig. S3:  Annual minima for transformed Hudson River flow data for r = 30d, constituting histor-

ical occurrences of a 30d drought. 
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Fig. S4:  (a) Great Sacandaga Lake elevation-volume relationship; (b) Great Sacandaga Lake and 

Conklingville Dam (E.J. West hydropower facility) generating capacity-elevation rela-

tionship. Source: ORNL (2011). 
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Fig. S5:  Diagnostic (a) probability; ( b) quantile; and (c) density plots for the GEV fit for a 30d 

drought. 
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Fig. S6:  Ranges of estimates of expected present value of total loss (2018 $M) under the coun-

terfactual. Social discount rate (Discount; %); odds ratio representing expected years 

between droughts (Drought; y); social cost of carbon (SCC; 2018 $); expected aug-

mented water release (Vol Δ; Mm
3
); ratio of load-based marginal price of electricity in

NY State Electricity Zone J (a proxy for the marginal cost of replacement electric pow-

er) to the average operating and maintenance costs of hydropower (Markup; unitless). 

Estimates for each parameter range were undertaken with all other parameters at their 

central values.  
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