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1 Data description

Source of data: Center for Research in Security Prices (CRSP) database: http://www.crsp.org/;
accessed through Wharton Research Data Services (WRDS)).

Description of the data: Daily stock price data from NASDAQ spanning over a period of 47
years, from 1972 to 2018. We denote the length of the entire data in terms of years by T (T = 47).
We have considered 4-year wide moving windows, viz., 1972-75, 1973-76 and so on till 2015-18
(windows are denoted by k = 1, 2, ..., 44).

Stock selection: In the analysis, For each window, we have calculated the market capitalization
of all stocks at the end of the period and chosen top N = 300, with a restriction that the data for
chosen stocks cannot have more than 5% missing values within a window (which we fill by zeros).
This dataset covers pre-crisis, crisis and post-crisis periods (the crisis period was 2007-09). Due to
missing data, the first window (1972-75) contains only 124 stocks.

Description of each window: The k-th window has a size of N × Tk where N = 300 (except the
first one, where N = 124). Tk varies within 1002-1011 as there roughly 250 trading days per year
and each window covers four consecutive calender years.

1.1 Constructing log return series

All the computational analysis have been conducted on the log-return data, obtained from each
of the window data. For each window, we denote each price series by Sk

i (t) where i denotes the
stock, t denotes the time period within a window and k denotes the window. A four-year long
window has a roughly 1000 days (each year has slightly more than 250 trading days) denoted by
Tk. Log-return data is defined as

Gk
i (t) = log Sk

i (t+ 1)− log Sk
i (t). (1)

Next we normalize the log return as follows,

gki (t) =
Gk

i (t)− < Gk
i (t) >

σki
(2)

where < . > denotes the sample average and σki is the sample standard deviation of Gi.

2 Quantification of Linear and Nonlinear Relationships

In this section, the steps to compare the information content in linear and nonlinear relationships
are explained. We have created the cross-correlation matrix to capture the linear relationship and
mutual-information matrix to capture the non-linear relationship for each data-window.
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2.1 Dominant Eigenvector of the Correlation-based Distance Matrix

1. For the k-th window, we have created the cross-correlation matrix of size 300 × 300 (except
for the 1972-75 window, which is of size 124× 124) from the normalised log-return matrix.

Ck
ij =< gki (t)gkj (t) > (3)

2. Then we calculate the distance matrix using the following transformation proposed by [12],

dkij =
√

2(1− Ck
ij). (4)

3. Then we conduct an eigendecomposition of the distance matrix Dk
ij where k corresponds to

the kth window. Eigendecomposition of a square matrix D of size N ×N can be written as

D = V ΛV −1. (5)

Here, V is a square N ×N matrix whose ith column is the i-th eigenvector vi of M and Λ is
the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λii = λi.

2.2 Dominant eigenvector of the Mutual Information matrix

Let us first define Shannon entropy, joint entropy and mutual information.

Definition 1 For the probability distribution p(x) of a discrete variable X defined over a domain
[x1, x2 ... xN ], the Shannon entropy is given by [4],

H(X) = −
∑
i

p(xi) log2 p(xi). (6)

Definition 2 For two discrete variables X and Y with probability distributions p(x) and p(y), the
joint entropy is given by [4],

H(X,Y ) = −
∑
i

∑
j

p(xi, yj) log2 p(xi, yj) (7)

where p(xi, yj) denotes joint probability.

Definition 3 For two variables X and Y having probability distributions p(x) and p(y), mutual
information is defined as [4],

I(X;Y ) =
∑
i,j

p(xi, yj) log2
p(xi, yj)

p(yj)p(xi)
. (8)

Now we are in a position to describe the steps.

3



1. For the k-th window, we construct mutual information matrix Mk from the log-return matrix,
where element Mk

ij is defined as

Mk
ij = I(Sk

i ;Sk
j ). (9)

where, Sk
i and Sk

j are log-returns of ith and jth stocks in kth window and I() is mutual
information defined above.

2. Then we conduct an eigendecomposition of the mutual information matrix Mk
ij , where k

corresponds to the kth window. Here, eigendecomposition of the square matrix M of size
N ×N can be written as

M = V ΛV −1. (10)

Here, V is a square N × N matrix whose ith column is the i-th eigenvector vi of the mu-
tual information matrix M and Λ is the diagonal matrix whose diagonal elements are the
corresponding eigenvalues, Λii = λi.

2.3 Comparison Between Linear and Nonlinear Relationships

Definition 4 Linear regression is a linear model that captures the relationship between a response
variable y and a set of explanatory variables x:

yi = α+ βxi + εi, for i = 1, ..., N, (11)

where α represents the intercept, β represents the slope and ε represent the error term (also called
noise).

We employ a regression framework to check for a relationship between the distance matrix
and the mutual information matrix for each time window k. Note that each of them contain N2

number of elements where N = 300. Rather than comparing all the elements, we simply consider
the dominant eigenvectors of the respective matrices since they explain a large part of the total
variability of the empirical matrices. This choice is also motivated by the fact that the dominant
eigenvector can be treated as the ‘market mode’ of these matrices [6].

1. We regress the dominant eigenvector of mutual information matrix on the dominant eigen-
vector of distance matrix. The regression specification is

vmi,k
i = α+ βvD,k

i + εi, for i = 1, ..., N, (12)

In Fig. 1 of the main text, we have plotted the evolution of R2 value (extracted from all
windows).

2. Note that for calculating mutual information, one needs to discretize the data. In order to
ensure the robustness of the results, the analysis has been done by converting each series into
an ordinal categorical series with different bin classes denoted by b. We have done the analysis
for b = 8, 12 and 16. As Fig. 1 in the main text shows, the results are nearly identical.
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3. In tables 1, 2 and 3, we describe the summary of the regression results (intercept, slope,
standard error of the slope coefficient, R2 and p-value of the slope).

3 Complexity through systemic risk

We construct Granger causal network (GCN hereafter) for each window of data (we have
excluded the first window as the network size was not comparable with the rest). The network is
constructed as follows.

1. The j-th asset’s return is said to Granger cause i-th asset’s return, if βij in the following
regression is significant:

rit = α+ βiiri,t−1 + βijrj,t−1 + εit. (13)

2. For each pair {i, j} of stocks, if the j−th stock Granger causes the i-th stock, then there exists
an edge from j to i. We represent the edge by 1 and if there is no causation, we represent it
by 0.

3. We have evaluated the existence of causal relationship at the standard 5% level of significance.
All estimation exercises have been carried out using lmtest package in R.

4. Thus we get an N × N matrix which is binary in nature. We call this the Granger causal
network or GCN (denoted by G) which has edges connecting pairs of nodes {i, j} described
by {gij}.

5. Once the GCN is created, we find PageRank [7] of GCN . The PageRank vector of a network
with adjacency matrix G is given by a vector v such that the j-th element satisfies

vj =
1− α
N

+ α
∑

k∈G(j)

gjkvk
dk

(14)

where α is a tuning parameter (a standard value is 0.15), dk is the number of outbound links
on j and G(j) is the neighborhood of node j.

This value represents a measure of risk. A high PageRank would indicate higher propensity
of lagged movement with respect to other stocks. Thus this measure quantifies higher risk of
spillover within the network.

We study the evolution of assets in GCN . A high dispersion in the PageRank would imply high
inequality in influence across the stocks. In Fig. 2 in the main text, we present the time series of
the standard deviation and differential entropy of the PageRank of GCN over all time windows.
Differential entropy is defined as

E = −
∫
p(x) log

(
p(x)

m(x)

)
dx (15)

where m(x) represents information invariance and measurement scale (see for example [5]).
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Table 1: Results for regression with dominant eigenvectors of the mutual information matrix (num-
ber of bins= 8) and the distance matrix.

Year Intercept Slope Standard Error R square p-value

1972-75 1.149 -11.828 1.433 0.358 2.117e-13

1973-76 0.02 0.44 1.977 0.0 0.824

1974-77 0.065 -0.365 2.301 0.0 0.874

1975-78 0.286 -4.171 2.591 0.009 0.108

1976-79 0.066 -0.391 2.513 0.0 0.876

1977-80 0.622 -9.913 1.474 0.132 9.040e-11

1978-81 0.796 -12.972 1.787 0.15 3.386e-12

1979-82 1.001 -16.603 2.227 0.157 9.831e-13

1980-83 1.585 -26.848 2.467 0.284 1.916e-23

1981-84 1.543 -25.988 2.277 0.304 2.828e-25

1982-85 1.532 -25.68 1.592 0.466 1.673e-42

1983-86 1.769 -29.799 2.233 0.374 3.665e-32

1984-87 0.959 -15.701 0.633 0.674 1.654e-74

1985-88 0.943 -15.419 0.608 0.683 2.169e-76

1986-99 0.847 -13.762 0.601 0.638 1.234e-67

1987-90 0.621 -9.826 0.489 0.575 2.541e-57

1988-91 0.753 -12.126 0.97 0.344 3.990e-29

1989-92 0.786 -12.689 1.122 0.3 6.406e-25

1990-93 0.797 -12.902 1.141 0.3 6.629e-25

1991-94 0.892 -14.557 1.509 0.238 2.401e-19

1992-95 0.646 -10.287 1.881 0.091 9.606e-08

1993-96 0.77 -12.428 1.817 0.136 4.461e-11

1994-97 0.937 -15.313 1.466 0.268 5.719e-22

1995-98 1.077 -17.729 0.956 0.536 1.297e-51

1996-09 1.08 -17.783 0.888 0.574 4.200e-57

1997-00 0.938 -15.312 0.57 0.707 1.619e-81

1998-01 0.882 -14.369 0.408 0.806 2.841e-108

1999-02 0.798 -12.928 0.409 0.771 2.952e-97

2000-03 0.671 -10.741 0.292 0.819 1.016e-112

2001-04 0.621 -9.904 0.227 0.865 1.239e-131

2002-05 0.638 -10.212 0.243 0.856 2.260e-127

2003-06 0.747 -12.103 0.365 0.787 5.983e-102

2004-07 0.742 -11.971 0.439 0.714 5.408e-83

2005-08 0.343 -5.002 0.216 0.644 9.517e-69

2006-09 0.319 -4.602 0.18 0.686 6.712e-77

2007-10 0.281 -3.939 0.157 0.68 1.193e-75

2008-11 0.244 -3.296 0.142 0.643 1.098e-68

2009-12 0.284 -4.018 0.149 0.709 8.222e-82

2010-13 0.334 -4.895 0.149 0.784 2.858e-101

2011-14 0.334 -4.901 0.196 0.677 4.294e-75

2012-15 0.446 -6.852 0.266 0.69 7.491e-78

2013-16 0.43 -6.569 0.263 0.677 3.334e-75

2014-17 0.41 -6.211 0.304 0.584 9.844e-59

2015-18 0.397 -5.988 0.258 0.645 6.480e-69
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Table 2: Results for regression with dominant eigenvectors of the mutual information matrix (num-
ber of bins= 12) and the distance matrix.

Year Intercept Slope Standard Error R square p-value

1972-75 0.852 -8.509 1.317 0.255 2.225e-09

1973-76 0.372 -5.53 1.281 0.059 2.164e-05

1974-77 0.436 -6.642 1.406 0.07 3.577e-06

1975-78 0.655 -10.444 1.705 0.112 2.861e-09

1976-79 0.48 -7.434 1.732 0.058 2.402e-05

1977-80 0.668 -10.655 1.132 0.229 1.330e-18

1978-81 0.845 -13.741 1.316 0.268 5.731e-22

1979-82 1.019 -16.78 1.492 0.298 1.072e-24

1980-83 1.509 -25.35 1.746 0.414 1.706e-36

1981-84 1.502 -25.165 1.571 0.463 4.207e-42

1982-85 1.381 -23.037 1.507 0.44 2.391e-39

1983-86 1.624 -27.274 2.093 0.363 5.110e-31

1984-87 0.834 -13.525 0.607 0.625 1.938e-65

1985-88 0.814 -13.169 0.582 0.632 1.181e-66

1986-89 0.733 -11.764 0.56 0.597 9.573e-61

1987-90 0.511 -7.909 0.484 0.473 2.432e-43

1988-91 0.587 -9.226 0.955 0.239 2.174e-19

1989-92 0.621 -9.82 1.095 0.213 3.331e-17

1990-93 0.619 -9.795 1.101 0.21 5.741e-17

1991-94 0.711 -11.405 1.458 0.17 8.897e-14

1992-95 0.498 -7.709 1.784 0.059 2.110e-05

1993-96 0.617 -9.763 1.715 0.098 3.004e-08

1994-97 0.787 -12.699 1.358 0.227 2.145e-18

1995-98 0.912 -14.864 0.877 0.491 1.444e-45

1996-99 0.9 -14.645 0.797 0.531 5.750e-51

1997-00 0.803 -12.968 0.497 0.695 6.355e-79

1998-01 0.768 -12.374 0.347 0.81 2.008e-109

1999-02 0.706 -11.297 0.331 0.796 8.072e-105

2000-03 0.602 -9.517 0.217 0.866 2.953e-132

2001-04 0.55 -8.639 0.178 0.887 3.155e-143

2002-05 0.572 -9.021 0.185 0.889 4.991e-144

2003-06 0.666 -10.656 0.29 0.819 8.580e-113

2004-07 0.678 -10.847 0.376 0.736 3.082e-88

2005-08 0.31 -4.42 0.181 0.666 6.073e-73

2006-09 0.288 -4.038 0.151 0.707 1.843e-81

2007-10 0.256 -3.494 0.13 0.707 2.480e-81

2008-11 0.226 -2.977 0.119 0.677 4.476e-75

2009-12 0.263 -3.632 0.13 0.723 5.910e-85

2010-13 0.303 -4.328 0.123 0.805 8.682e-108

2011-14 0.303 -4.328 0.166 0.694 1.049e-78

2012-15 0.414 -6.264 0.23 0.713 1.048e-82

2013-16 0.39 -5.838 0.221 0.701 4.274e-80

2014-17 0.369 -5.478 0.251 0.615 8.922e-64

2015-18 0.353 -5.194 0.213 0.666 6.365e-73
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Table 3: Results for regression with dominant eigenvectors of the mutual information matrix (num-
ber of bins= 16) and the distance matrix.

Year Intercept Slope Standard Error R square p-value

1972-75 0.708 -6.909 1.291 0.19 4.142e-07

1973-76 0.442 -6.714 1.078 0.115 1.621e-09

1974-77 0.498 -7.69 1.176 0.126 2.671e-10

1975-78 0.709 -11.36 1.485 0.164 2.828e-13

1976-79 0.574 -9.039 1.5 0.109 4.917e-09

1977-70 0.653 -10.39 1.001 0.265 9.726e-22

1978-81 0.828 -13.426 1.142 0.317 1.743e-26

1979-82 0.97 -15.9 1.195 0.373 5.175e-32

1980-83 1.362 -22.736 1.344 0.49 1.870e-45

1981-84 1.432 -23.931 1.391 0.498 1.446e-46

1982-85 1.284 -21.352 1.493 0.407 1.136e-35

1983-86 1.532 -25.658 2.025 0.35 1.027e-29

1984-87 0.76 -12.228 0.622 0.564 1.037e-55

1985-88 0.736 -11.819 0.598 0.567 3.597e-56

1986-89 0.663 -10.538 0.586 0.521 1.665e-49

1987-90 0.436 -6.605 0.505 0.365 3.294e-31

1988-91 0.501 -7.745 0.974 0.175 3.843e-14

1989-92 0.514 -7.975 1.11 0.148 5.486e-12

1990-93 0.534 -8.315 1.098 0.161 4.716e-13

1991-94 0.612 -9.685 1.438 0.132 8.500e-11

1992-95 0.425 -6.445 1.746 0.044 0.000265

1993-96 0.538 -8.395 1.674 0.078 9.062e-07

1994-97 0.663 -10.558 1.356 0.169 1.151e-13

1995-98 0.816 -13.186 0.883 0.428 5.154e-38

1996-09 0.804 -12.982 0.792 0.474 1.762e-43

1997-00 0.719 -11.492 0.494 0.645 5.882e-69

1998-01 0.681 -10.854 0.334 0.78 6.181e-100

1999-02 0.612 -9.652 0.316 0.758 1.030e-93

2000-03 0.54 -8.425 0.199 0.857 4.205e-128

2001-04 0.503 -7.795 0.159 0.889 2.047e-144

2002-05 0.521 -8.116 0.168 0.887 3.472e-143

2003-06 0.602 -9.518 0.268 0.809 4.335e-109

2004-07 0.604 -9.53 0.34 0.725 1.561e-85

2005-08 0.284 -3.959 0.165 0.659 1.159e-71

2006-09 0.264 -3.618 0.138 0.698 1.446e-79

2007-10 0.239 -3.186 0.12 0.701 3.506e-80

2008-11 0.211 -2.71 0.109 0.673 2.163e-74

2009-12 0.244 -3.288 0.117 0.725 1.392e-85

2010-13 0.276 -3.852 0.111 0.803 4.051e-107

2011-14 0.281 -3.939 0.153 0.689 1.316e-77

2012-15 0.37 -5.489 0.206 0.704 8.534e-81

2013-16 0.353 -5.179 0.203 0.687 3.974e-77

2014-17 0.336 -4.893 0.233 0.597 1.084e-60

2015-18 0.327 -4.727 0.201 0.65 6.220e-70
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4 Algorithmic Information Theory-based Measures

In this section, the steps to compute the algorithmic complexity of the stocks-returns using
MDS scaling, have been explained.

1. For each data-window, we have created the cross-correlation matrix of size 300× 300 (except
for the 1972− 75 window, which is of size 124× 124) using,

Ck
ij =< gki (t)gkj (t) > . (16)

2. Then we have calculated the dissimilarity matrix of size 300× 300 (except for the 1972− 75
window, which is of size 124×124) using the correlation matrix, using the following equation,

dskij = 1− Ck
ij (17)

where dskij is the element in dissimilarity matrix DS for kth window. Note that this is not the

same as the distance matrix given by Eqn. 4. Note that all elements of the Dsk matrix for
all k now have to be within 0 and 2.

3. Then we projected the values on binary 2D plane using clustering technique (multi-dimensional
scaling). For that, we calculate the 2D co-ordinates of the projected values (using Euclidean
distance), fixing the angle of rotation for all of the windows. This step (fixing the rotation)
is important since otherwise the code randomly rotates the projection on the 2 dimensional
plane and that distorts the computation of the complexity measure.

4. We map these points on 300× 300 grid (124× 124 for the first window). Assigning the 1 to
the cell if there are corresponding data-points within that cell, and 0 to the rest of the cells.

5. Then we calculated the algorithmic complexity of this binary grid, using BDM module (a
python package) for 2 symbol, 2D array. Available at https://pypi.org/project/pybdm/.

6. Calculate the same for all the windows and plot the corresponding evolution of the complexity
measure over the entire time period in Fig. 3 in the main paper.

5 Interactive Dynamics: Complexity Through Heterogeneity

In this part, the estimate heterogeneity in the interaction strength across assets. This hetero-
geneity is argued to capture complexity in the system.

1. First, we consider vector autoregression model with lag 1:

Xt = Γ̂Xt−1 + εt (18)

where Xt represents log return series, Γ represents the interaction matrix and εt represents
eror term. Note that in this set up Xt is a vector of size N × 1 where N = 300 and Γ is a
matrix of size 300 × 300.
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2. We estimate this VAR model on the k-th window (using the stats.linregress module of
python available at https://www.statsmodels.org/dev/vector ar.html) for all k.

3. After estimating the interaction matrix Γ, the standard deviation of the estimated parameters
in the Γ matrix is calculated. We call this parameter σ and it represents the heterogeneity
interactions across stocks. For extracting the elements of the Γ̂ matrix, we had to employ vars
package in R (stats.linregress package does not allow extraction of the interaction matrix).

4. We plot the evolution of the standard deviation parameter over the available data-length.
Fig. 4 presents the evolution of the degree of heterogeneity in the interaction strengths of
stocks.

5. Summary of the results of the VAR estimations are given in table 4. Num. of days (T )
represents the number of days within each window for which we estimate the model. By
construction, it is slightly above 1000 days for each stock (corresponding to 4 years’ longi-
tudinal data in each window). We also present the loglikelihood measure along with three
information criteria (Akaike, Bayesian and Hannan-Quinn).
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Table 4: Summary of the result for VAR estimations (N = 300).

Year Num. of days (T ) Log likelihood AIC BIC HQIC

1972-85 1008 249051.06 -815.29 -739.7 -786.57

1973-76 1009 847905.24 -2353.06 -1913.04 -2185.89

1974-77 1009 872067.49 -2400.95 -1960.93 -2233.79

1975-78 1008 884220.04 -2426.6 -1986.23 -2259.3

1976-79 1008 888766.17 -2435.62 -1995.25 -2268.32

1977-80 1008 868455.86 -2395.32 -1954.96 -2228.02

1978-81 1009 865648.75 -2388.23 -1948.21 -2221.06

1979-82 1010 861156.86 -2377.81 -1938.14 -2210.79

1980-83 1010 831958.02 -2319.99 -1880.32 -2152.97

1981-84 1010 834343.79 -2324.72 -1885.05 -2157.69

1982-85 1010 820873.39 -2298.04 -1858.37 -2131.02

1983-86 1010 793303.97 -2243.45 -1803.78 -2076.42

1984-87 1010 780575.98 -2218.25 -1778.57 -2051.22

1985-88 1010 777923.27 -2212.99 -1773.32 -2045.97

1986-89 1009 790212.12 -2238.7 -1798.68 -2071.54

1987-90 1009 794435.93 -2247.07 -1807.05 -2079.91

1988-91 1009 781902.56 -2222.23 -1782.21 -2055.07

1989-92 1010 759536.33 -2176.58 -1736.91 -2009.56

1990-93 1011 744323.44 -2145.18 -1705.85 -1978.29

1991-94 1010 751615.68 -2160.9 -1721.23 -1993.87

1992-95 1009 742966.5 -2145.05 -1705.03 -1977.89

1993-96 1009 737347.94 -2133.92 -1693.9 -1966.75

1994-97 1009 745722.4 -2150.52 -1710.5 -1983.35

1995-98 1009 717267.15 -2094.11 -1654.09 -1926.95

1996-99 1009 670600.04 -2001.61 -1561.59 -1834.45

1997-00 1007 639061.65 -1941.26 -1500.54 -1773.81

1998-01 1002 647602.81 -1963.74 -1521.28 -1795.59

1999-02 1003 690594.27 -2048.36 -1606.25 -1880.35

2000-03 1002 718190.71 -2104.64 -1662.17 -1936.49

2001-04 1002 778859.22 -2225.73 -1783.27 -2057.58

2002-05 1006 818752.31 -2299.58 -1858.51 -2131.99
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