Synergistic degradation of pyrethroids by the quorum sensing-regulated carboxylesterase of *Bacillus subtilis* BSF01

Ying Xiao^{a, b}, Qiqi Lu^a, Xin Yi^a, Guohua Zhong^{a, c}*, Jie Liu^a*

a. Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; South China Agricultural University, Guangzhou 510642, P. R. China

b. Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510665, P. R. China

c. Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou,

510642, P. R. China

*Address correspondence to Guohua Zhong and Jie Liu

E-mail: guohuazhong@scau.edu.cn; jieliu@scau.edu.cn

Tel: +86 020 8528 0308

Pyrethroid	Calibration	R^2	Spiked concentration (mg L ⁻¹)	Average recovery (%)	RSD (%)
			1	82.2	3.3
β -cypermethrin	y = 54.562x - 60.248	0.9998	25	87.5	2.6
			50	94.6	2.4
	<i>y</i> = 38.082 <i>x</i> - 44.181	0.9995	1	87.1	3.3
Cypermethrin			25	85.4	0.9
			50	91.1	0.9
β -cyfluthrin	<i>y</i> = 51.984 <i>x</i> - 50.939	0.9996	1	81.3	2.0
			25	86.2	2.2
			50	89.9	2.4
Cyfluthrin	<i>y</i> = 53.241 <i>x</i> - 38.069	0.9999	1	89.1	5.2
			25	87.7	4.3
			50	88.5	2.9
	<i>y</i> = 61.130 <i>x</i> - 24.732	0.9997	1	91.0	6.7
λ -cyhalothrin			25	96.2	5.3
			50	89.6	2.4
Cyhalothrin	y = 59.435x - 28.235	0.9998	1	79.0	2.1
			25	85.7	2.5
			50	89.3	1.2

Table S1 The calibration and spiked recoveries of six pyrethroids

Mutation	Mutation Energy (kcal/mol)	Effect of mutation
:LEU64>ALA	0.64	Destabilizing
:LEU172>ALA	0.74	Destabilizing
:LYS92>ALA	0.74	Destabilizing
:LEU130>ALA	0.86	Destabilizing
:PHE161>ALA	0.92	Destabilizing

 Table S2 Results of alanine scanning mutagenisis

Table S3 Results of saturation mutation

	Mutation		VDW interaction	Electrostatic
Mutation	energy	Effect of mutation	energy	interaction energy
	(kcal/mol)	Effect of mutation	(kcal/mol)	(kcal/mol)
:LEU64>PRO	0.77	Destabilizing	1.44	0.08
:LYS92>TYR	1.64	Destabilizing	3.4	0.08
:LEU130>ARG	1.35	Destabilizing	2.57	0.13
:PHE161>GLY	0.97	Destabilizing	1.83	0.02
:LEU172>GLY	0.99	Destabilizing	2.02	-0.02

 Table S4 Primer sequences used in this study

Primer function category and name	Primer (5'-3') #	Restriction enzymes
Gene Cloning		
comA-F	ATGAAAAAGATACTAGTGATTG	
comA-R	TTAAAGTACACCGTCTGATT	
CesB-F	ATGATACAAGATTCAATGC	
CesB-R	CTATTTTATCCCCCCGCAT	
Construction plasmids of protein expression		
comA-eF	CCG <u>CTCGAG</u> ATGAAAAAGATACTAGTG	Xhol I
comA-eR	CG <u>GAATTC</u> TTAAAGTACACCGTCTGAT	EcoR I
CesB-eF	CG <u>GGATCCA</u> IGATACAAGAIICAAIGC	BamH 1
CesB-eR		Hina III
T7F	TAATACGACTCACTATAGGG	
T7TER	TGCTAGTTATTGCTCAGCGG	
L64P-F	CTTCACGGGGGCCcTTTCAGCTCTGC	
L64P-R	GCAGAGCTGAAAgGGCCCCCGTGAAG	
K92Y-F	GATATGATAGGAGACtacAATAAAAGTATACC	
K92Y-R	GGTATACTTTTATTgtaGTCTCCTATCATATC	
L130R-F	CTGGCCGGCTTTTCGagaGGCGGGTCCCATATC	
L130R-R	GATATGGGACCCGCCtctCGAAAAGCCGGCCAG	
F161G-F	GCGTTTATTTCAggTCATCCGGATG	
F161G-R	CATCCGGATGAccTGAAATAAACGC	
L172G-F	CTATAAATACGCTGCAGAAggTACAGGGGGCAAGTGGAGC	
L172G-R	GCTCCACTTGCCCCTGTAccTTCTGCAGCGTATTTATAG	
qRT-PCR		
CesB-RT-F	AGTTTGCCGCGGTTGAAA	
CesB-RT-R	TAAGCGAAGGTGCGTCCT	
comA-RT-F	CAATCAAAACCGCTTCCGTC	
comA-RT-R	GAAATCGCAGATGCCCTTCA	
16s rDNA-RT-F (reference)	TTGCTCCCTGATGTTAGCGGC	
16s rDNA-RT-R (reference)	ACGCATCGTTGCCTTGGTGAG	

Restriction enzymes were underlined; Site-directed mutagenesis was in lower case.

Supplementary figure caption:

Fig. S1 Genetic basis of *comA* in strain BSF01. A, PCR amplification products (M: DNA marker; Lane 1: gene *comA*); and B, Nucleotide sequence and amino acid sequence of *comA* gene

Fig. S2 Genetic and transcriptional basis of *cesB* in strain BSF01. A, PCR amplification products (M: DNA marker; Lane 1: gene *comA*); and B, comparison of multiple sequence alignments among CesB and other homologous enzymes.

Fig. S1 Genetic basis of *comA* in strain BSF01. A, PCR amplification products (M: DNA marker; Lane 1: gene *comA*); and B, Nucleotide sequence and amino acid sequence of *comA* gene

A ₁	М	bp	
	-	2000	
	-	1000	
		750	
		500	
	-	250	
۰.	-	100	
В			
ACJ07 ACM79 AEY11 ybfK	038 141 370		98 AGFYNEAPHNPYRDHYKLWDYVQDELPKWYEAHFPLNIKTDPQGHSMGCHGALDADPD 49 LSVVDMEHYTRPVADILA-RAEGQSILLCHSLGCASISWLAQH 67 EGVYDMEDLARATDKMAGFIAALAAEYKPSEVIGLGYSNGANIMANLLIE 101METRADFAEWMKDVFDSLGLETAHLAGFSLG 5. * * *.
ACJ07 ACM79 AEY11 ybfK	038 141 370		 HPNRYRSVSAFDTLQNPLDCPWGKKAFDIYLGAPGEIWKNQRACDNIRDATYWLPNGLDQ HPDKVAGLIY_TAVLTAPGITPETF-VLPGEPNRGGTPHALDL KGRVFDKAAL_HPLVPFRPKDNPALEGAKILVTAGRMDP APERVERAVVWSPAEAFISFHPDVY-KYAAELTGASGAESYIKWITGNSYD
ACJ07 ACM79 AEY11 ybfK	038 141 370		216 GNSPGFLPKSLRNYALLTDNPWYVGPLQNKDTRGYDHSYPQLKRELPKHLRFLQDTN 132 IQPVDEGRGLQADFSRLERLREVFMGDYPGEGMPPAEQFLQTQS 156 ICPPDLTEALAQYFERQKADVELVWHPGGHELRQTELAAVQS 192 LHPLLQR-QIVAGVEWQDELRSLKPTENGFPYVFTDQELKSLQVPV
ACJ07 ACM79	038		273 176 TVPFGTPNPMEGRALEIPRLYIEALDDVVIPIAVQRQMQKEFPGPVAVVSLPASHAPYYS
AEY11 ybfK	370		198 LLAY

Fig. S2 Genetic and transcriptional basis of *cesB* in strain BSF01. A, PCR amplification products (M: DNA marker; Lane 1: gene *comA*); and B, comparison of multiple sequence alignments among $CesB^*$ and other homologous enzymes.

* The alternative name "ybfK" for carboxylesterase CesB was applied during analysis. Its conserved motif Gly-X-Ser-X-Gly was boxed.