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Appendix A. Proofs of the main results
We report in this section the proofs to the main results in the order they appear in the paper.

A.1 Proof of Lemma 2.1

PROOF. By integration via parts applied to the product L(s)φε(t− s), for 0 ≤ s ≤ t, we get

L(t)φε(0) = L(0)φε(t) +

∫ t

0
φε(t− s)dL(s)−

∫ t

0
L(s)φ′ε(t− s)ds.

The claim follows since φε(0) = 0 and L(0) = 0.

A.2 Proof of Proposition 2.2

PROOF. Let us look at the increments of the process for 0 < t1 < t2 < t3 < t4 < T , namely,

Lε(t2)− Lε(t1) =

∫ t2

0
φε(t2 − s)dL(s)−

∫ t1

0
φε(t1 − s)dL(s)

=

∫ t1

0
(φε(t2 − s)− φε(t1 − s)) dL(s) +

∫ t2

t1

φε(t2 − s)dL(s),

Lε(t4)− Lε(t3) =

∫ t3

0
(φε(t4 − s)− φε(t3 − s)) dL(s) +

∫ t4

t3

φε(t4 − s)dL(s).

We see that these are not independent, and Lε is thus not a Lévy process.

A.3 Proof of Theorem 2.4

PROOF. We need to show that

lim
ε↓0

E

[∫ T

0

(
Lε(t)− L(t)

)2
dt

]
= 0. (A.1)

For the process Z(t) := Lε(t)− L(t), from equation (2.3) and the identity L(t) =
∫ t

0 dL(s), we write that
Z(t) =

∫ t
0 (φε(t− s)− 1) dL(s). By means of the Fubini theorem, switching in the integration equation

(A.1) with respect to t with certain expectations, we get something of the form
∫ T

0 E
[
Z(t)2

]
dt, where
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E
[
Z(t)2

]
is the second moment of Z(t). Denoting MZ(t)(u) := E[eiuZ(t)], the characteristic function of

Z(t), we know that

E
[
Z(t)2

]
= −

d2MZ(t)(u)

du2

∣∣∣∣∣
u=0

. (A.2)

From (Benth, Di Persio, and Lavagnini 2018, Appendix A) the function MZ(t) takes the form

MZ(t)(u) = exp

{∫ t

0
η
(
u ·
(
φε(t− s)− 1

))
ds

}
, (A.3)

η being the characteristic function of the Lévy process L. In particular, since L is a martingale, as a
consequence of equation (2.2), from (Tankov 2003, Theorem 3.1) the function η takes the form

η(w) = −1

2
Σw2 +

∫ +∞

−∞

(
eiwx − 1− iwx

)
ν(dx),

so that η(0) = 0, but also η′(0) = 0 since L has zero mean, and η′′(0) = −Σ −
∫ +∞
−∞ x2ν(dx). From

equation (A.2) and (A.3), we then get

E
[
Z(t)2

]
=

(
Σ +

∫ +∞

−∞
x2ν(dx)

)∫ t

0
(φε(t− s)− 1)2 ds = σ2

∫ t

0
(φε(s)− 1)2 ds,

and the expectation in equation (A.1) is bounded by

E

[∫ T

0

(
Lε(t)− L(t)

)2
dt

]
≤ Tσ2

∫ T

0
(φε(s)− 1)2 ds.

From equation (2.6), we know that |φε(s)| ≤ 1 and limε↓0 φε(s) = 1 for every s ∈ [0, T ]. The claim then
follows by applying the Dominated Convergence Theorem.

A.4 Proof of Proposition 2.7

PROOF. Starting from Lemma 2.5, we consider the asymptotic expansion (2.9) truncated at the second
order in x = T

ε and x =
√

2T
ε , respectively. We get the following:

E
[
(Lε(T )− L(T ))2

]
≤ 4σ2T

e
−T2

ε2

2π

(
ε3

T 3
− ε

T

)2

+

+ 4σ2ε

 1√
2π

+ 2
e
−T2

ε2

2π

(
ε3

T 3
− ε

T

)
− 1√

π

1

2
+
e
−T2

ε2

√
2π

(
ε3

2
√

2T 3
− ε√

2T

) .

After simplification, we obtain

E
[
(Lε(T )− L(T ))2

]
≤ 2σ2 e

−T2

ε2

π

(
ε6

T 5
− ε4

2T 3

)
+

2(
√

2− 1)√
π

σ2ε.
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By considering the Taylor expansion for the exponential function truncated at the first order, namely
ex ≈ 1 + 1

x where x = −T
2

ε2
converges to −∞ when ε approaches 0, for K1 := 2(

√
2−1)√
π

σ2, we obtain the
result.

A.5 Proof of Lemma 3.3

PROOF. The result follows by applying the integration by use of parts from itô’s theory to equation
(3.5). From the differentiability of Lε and equation (2.7), we can write that

Xε(t) = φ′ε(0)

∫ t

0
L(s)g(t− s)ds+

∫ t

0

(∫ s

0
φ′′ε(s− v)L(v)dv

)
g(t− s)ds. (A.4)

By use of the stochastic Fubini Theorem, for the second term on the right-hand side, it holds that∫ t

0

(∫ s

0
φ′′ε(s− v)L(v)dv

)
g(t− s)ds =

∫ t

0

(∫ t

v
φ′′ε(s− v)g(t− s)ds

)
L(v)dv. (A.5)

By integration of the parts, the inner integral on the right-hand side of equation (A.5) becomes∫ t

v
φ′′ε(s− v)g(t− s)ds = φ′ε(t− v)g(0)− φ′ε(0)g(t− v)−

∫ t

v
φ′ε(s− v)

∂

∂s
g(t− s)ds,

where ∂
∂sg(t− s) = −g′(t− s). Let us focus on p > q + 1. Since g(0) = 0, switching the roles of s and v

and putting together the results of the last two equations, equation (A.4) becomes

Xε(t) =

∫ t

0

(∫ t

v
φ′ε(s− v)g′(t− s)ds

)
L(v)dv =

∫ t

0

(∫ t−s

0
φ′ε(v)g′(t− s− v)dv

)
L(s)ds,

which proves the statement. Similarly, for p = q + 1, since g(0) = 1, we get

Xε(t) =

∫ t

0

(
φ′ε(t− s) +

∫ t−s

0
φ′ε(v)g′(t− s− v)dv

)
L(s)ds,

which concludes the proof.

A.6 Proof of Proposition 3.4

PROOF. We want to prove that limε↓0 hε(x) = h(x) for x > 0. Let us first consider p > q + 1. From
Lemma 3.2 and equation (3.11), a sufficient condition is that

lim
ε↓0

{∫ x

0
eλi(x−v)ψε(v)dv

}
= eλix for i = 1, ..., p. (A.6)

For ψε in equation (2.5), the integral on the left hand side of equation (A.6) becomes∫ x

0
eλi(x−v)ψε(v)dv = 2eλix+ 1

2ε
2λ2

i

[
Φ

(
x+ ε2λi

ε

)
− Φ (ελi)

]
ε↓0−−→ eλix, (A.7)

for Φ the cumulative distribution function of a standard Gaussian variable. For p = q + 1, we need
limε↓0 ψε(x) = 0 for every x > 0, which is trivially satisfied. This concludes the proof.
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A.7 Proof of Theorem 3.5

PROOF. By means of Lemma 3.3, we need to show that

lim
ε↓0

E

[∫ T

0

(∫ t

0

(
hε(t− s)− h(t− s)

)
L(s)ds

)2

dt

]
= 0.

By the Cauchy-Schwarz inequality, the inner integral of the last equation is bounded by(∫ t

0
(hε(t− s)− h(t− s))L(s)ds

)2

≤
∫ t

0
(hε(s)− h(s))2 ds ·

∫ t

0
L2(s)ds,

and E
[∫ T

0 L2(s)ds
]

= σ2 T 2

2 , for σ2 in equation (2.1). The whole expectation is bounded by

E

[∫ T

0

(∫ t

0

(
hε(t− s)− h(t− s)

)
L(s)ds

)2

dt

]
≤ σ2T

2

3 ∫ T

0

(
hε(s)− h(s)

)2
ds. (A.8)

From equation (3.11) and (A.7), for p > q + 1 we get

|hε(x)| ≤
p∑

i,j=1

∣∣∣b̃j∣∣∣ ∣∣∣λji ∣∣∣ |γi| ∣∣∣∣∫ x

0
eλi(x−v)ψε(v)dv

∣∣∣∣ ≤ 4

p∑
i,j=1

∣∣∣b̃j∣∣∣ ∣∣∣λji ∣∣∣ |γi| ∣∣∣eλix+ 1
2ε

2λ2
i

∣∣∣ < +∞,

so that, from the boundedness of hε and Proposition 3.4, by use of the Dominated Convergence Theorem

we conclude that Xε
ε↓0−−→ X in L2 ([0, T ]× Ω). The case p = q + 1 is similarly performed from the

boundedness of ψε.

A.8 Proof of Proposition 3.6

PROOF. Proceeding as in the proof of Theorem 3.5, similarly to equation (A.8), we write that

E
[
(Xε(T )−X(T ))2

]
= E

(∫ T

0

(
hε(t− s)− h(t− s)

)
L(s)ds

)2
 ≤ σ2T

2

3(
hε(T )− h(T )

)2
.

The proof comes from the spectral representation of h and hε in Lemma 3.2 and equation (3.11),
respectively, together with the Taylor series for the Gaussian distribution function in equation (2.8)
for small values of x, and the asymptotic expansion in equation (2.9) for large values of x, which are both
truncated at the first order. Introducing the constant

K2 := σ2T
3

π

p∑
i,j,`,k=1

b̃j b̃kλ
j+1
i λk+1

` γiγ`e
(λi+λ`)T ,

we conclude the proof.

A.9 Proof of Proposition 3.7

We start recalling the following result.
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THEOREM A.1. If Zn : Ω→ Rk is a Gaussian random variable for every n—and Zn → Z in L2(Ω) as
n→∞—then Z also has Gaussian distribution.

PROOF. See (Øksendal 2013, Appendix A) .

Since, for fixed t ≥ 0, Xε(t) is a random variable, the idea is to apply Theorem A.1 to prove that Xε(t)
has Gaussian distribution for every t ≥ 0. Considering for n > 0 the same partition Π(n) introduced in
Section 4, for m = m(t), 1 ≤ m ≤ n such that s(n)

m = t, and ∆s
(n)
j = ∆ for every j = 1, . . . , n, we define

the process {Xn
ε (t), t ≥ 0} as the approximating Riemann sum of the process {Xε(t), t ≥ 0} in Lemma

3.3, namely,

Xn
ε (t) :=

m∑
j=1

hε(t− s(n)
j )B(s

(n)
j )∆s

(n)
j . (A.9)

This is normally distributed as states the following lemma.

LEMMA A.2. The process {Xn
ε (t), t ≥ 0} has Gaussian distribution.

PROOF. From equation (A.9), Xn
ε (t) is the linear combination of samples from a Brownian motion, and

it thus has Gaussian distribution.

To prove that Xε has Gaussian distribution, by means of Theorem A.1 and Lemma A.2, it is then sufficient
to show that Xn

ε converges to Xε in L2([0, T ]× Ω).

PROPOSITION A.3. For every ε > 0, the following convergence holds:

lim
n↑∞

E

[∫ T

0

∣∣∣Xε(t)−Xn
ε (t)

∣∣∣2dt] = 0. (A.10)

PROOF. For the partition Π(n), we rewrite Xε in Lemma 3.3 and Xn
ε in equation (A.9) by

Xε(t) =
m∑
j=1

∫ s
(n)
j

s
(n)
j−1

hε(t− s)B(s)ds and Xn
ε (t) =

m∑
j=1

∫ s
(n)
j

s
(n)
j−1

hε(t− s(n)
j )B(s

(n)
j )ds.

By introducing

aj :=

∫ s
(n)
j

s
(n)
j−1

(
hε(t− s)B(s)− hε(t− s(n)

j )B(s
(n)
j )
)
ds, j = 1, . . . , n,

we then estimate the expectation in equation (A.10) by

E

∫ T

0

∣∣∣∣∣∣
m∑
j=1

aj

∣∣∣∣∣∣
2

dt

 ≤ ∫ T

0

n∑
j=1

E
[
|aj |2

]
dt+ 2

∫ T

0

n∑
j,k=1
j<k

E [|aj ||ak|] dt. (A.11)
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Let us focus on the product |aj ||ak|. It holds that

|aj ||ak| ≤
∫ s

(n)
j

s
(n)
j−1

∫ s
(n)
k

s
(n)
k−1

{∣∣∣hε(t− s)hε(t− v)B(s)B(v)
∣∣∣+
∣∣∣hε(t− s)hε(t− s(n)

k )B(s)B(s
(n)
k )
∣∣∣+

+
∣∣∣hε(t− s(n)

j )hε(t− v)B(s
(n)
j )B(v)

∣∣∣+
∣∣∣hε(t− s(n)

j )hε(t− s(n)
k )B(s

(n)
j )B(s

(n)
k )
∣∣∣} dvds,

where, for j < k, it holds that s(n)
j−1 ≤ s ≤ s

(n)
j ≤ s

(n)
k−1 ≤ v ≤ s

(n)
k ≤ T , so that, by Lemma A.4,

E [|aj ||ak|] ≤
∫ s

(n)
j

s
(n)
j−1

∫ s
(n)
k

s
(n)
k−1

{∣∣∣hε(t− s)hε(t− v)
∣∣∣ (s+

√
s
√
v − s

)
+

+
∣∣∣hε(t− s)hε(t− s(n)

k )
∣∣∣(s+

√
s

√
s

(n)
k − s

)
+
∣∣∣hε(t− s(n)

j )hε(t− v)
∣∣∣(s(n)

j +

√
s

(n)
j

√
v − s(n)

j

)
+

+

∣∣∣∣hε(t− s(n)
j )hε(t− s(n)

k )
∣∣∣ (s(n)

j +

√
s

(n)
j

√
s

(n)
k − s

(n)
j

)}
dvds ≤ 8K2T∆2,

and K > 0 is a constant such that |hε(x)| ≤ K. We focus now on |aj |2 in equation (A.11). By adding the
terms ±hε(t− s(n)

j )B(s) and using the inequality (a+ b)2 ≤ 2(a2 + b2), we get

|aj |2 ≤ 2

∣∣∣∣∣∣
∫ s

(n)
j

s
(n)
j−1

B(s)
(
hε(t− s)−hε(t− s(n)

j )
)
ds

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∫ s

(n)
j

s
(n)
j−1

hε(t− s(n)
j )
(
B(s)−B(s

(n)
j )
)
ds

∣∣∣∣∣∣
2

,

and by Hölder’s inequality

E


∣∣∣∣∣∣
∫ s

(n)
j

s
(n)
j−1

B(s)
(
hε(t− s)− hε(t− s(n)

j )
)
ds

∣∣∣∣∣∣
2
 ≤ ∫ s

(n)
j

s
(n)
j−1

sds

∫ s
(n)
j

s
(n)
j−1

∣∣hε(t− s)− hε(t− s(n)
j )
∣∣2ds,

E


∣∣∣∣∣∣
∫ s

(n)
j

s
(n)
j−1

hε(t− s(n)
j )
(
B(s)−B(s

(n)
j )
)
ds

∣∣∣∣∣∣
2
 ≤ ∫ s

(n)
j

s
(n)
j−1

∣∣∣hε(t− s(n)
j )
∣∣∣2 ds∫ s

(n)
j

s
(n)
j−1

(s
(n)
j − s)ds,

so that, with similar argumentations as before, we can write that∫ T

0

n∑
j=1

E
[
|aj |2

]
dt ≤ 12K2T 3∆.

Combining all the results, for ∆ = T/n, we get that

E

[∫ T

0

∣∣∣Xε(t)−Xn(t)
∣∣∣2dt] ≤ 28K2T 3∆

n↑+∞−−−−→ 0,

which proves the claim.
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LEMMA A.4. For every t ≤ s the inequality holds

E [|B(t)B(s)|] ≤ t+
√
t
√
s− t.

PROOF. For B(s) = B(s)−B(t) +B(t), since B(t) ⊥ B(s)−B(t), by the triangular inequality

E [|B(t)B(s)|] ≤ E
[
|B(t)|2 + |B(t)| |B(s)−B(t)|

]
= t+ E [|B(t)|]E [|B(s)−B(t)|] .

For B(t) ∼ N (0, t) and B(s) − B(t) ∼ N (0, s − t), we also get E [|B(t)|] =
√

2
π

√
t and

E [|B(s)−B(t)|] =
√

2
π

√
s− t. Combining these results, we obtain the claim.

A.10 Proof of Proposition 4.1

PROOF. Starting from equation (4.1), we rewrite L∆
ε at time t = T as

L∆
ε (T ) =

n∑
j=1

∫ s
(n)
j

s
(n)
j−1

φε(T − s(n)
j−1)dL(s),

so that the difference L∆
ε (T )− Lε(T ) becomes

L∆
ε (T )− Lε(T ) =

n∑
j=1

∫ s
(n)
j

s
(n)
j−1

(
φε(T − s(n)

j−1)− φε(T − s)
)
dL(s). (A.12)

By applying the integration by parts formula to the product L(s)
(
φε(T − s(n)

j−1)− φε(T − s)
)

for s(n)
j−1 ≤

s ≤ s
(n)
j , each of the integrals in the sum of equation (A.12) can be rewritten as

∫ s
(n)
j

s
(n)
j−1

(
φε(T − s(n)

j−1)− φε(T − s)
)
dL(s)

= L(s
(n)
j )

(
φε(T − s(n)

j−1)− φε(T − s(n)
j )
)
−
∫ s

(n)
j

s
(n)
j−1

L(s)ψε(T − s)ds

=

∫ s
(n)
j

s
(n)
j−1

(
L(s

(n)
j )− L(s)

)
ψε(T − s)ds, (A.13)
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for ψε = φ′ε. Combining equation (A.12) and (A.13), and since the increments for L are independent, the
error on the left-hand side in Proposition 4.1 becomes

E
[(
L∆
ε (T )− Lε(T )

)2
]

= E


 n∑
j=1

∫ s
(n)
j

s
(n)
j−1

(
φε(T − s(n)

j−1)− φε(T − s)
)
dL(s)

2


=
n∑
j=1

E


∫ s

(n)
j

s
(n)
j−1

(
φε(T − s(n)

j−1)− φε(T − s)
)
dL(s)

2


=
n∑
j=1

E


∫ s

(n)
j

s
(n)
j−1

(
L(s

(n)
j )− L(s)

)
ψε(T − s)ds

2


≤
n∑
j=1

E

∫ s
(n)
j

s
(n)
j−1

(
L(s

(n)
j )− L(s)

)2
ds

 · ∫ s
(n)
j

s
(n)
j−1

ψ2
ε(T − s)ds, (A.14)

where we used the Cauchy-Schwarz inequality. It can be calculated that

∫ s
(n)
j

s
(n)
j−1

ψ2
ε(T − s)ds =

2√
πε

(
Φ

(√
2

ε
(T − s(n)

j−1)

)
− Φ

(√
2

ε
(T − s(n)

j )

))
,

while, by means of equation (2.1),

E

∫ s
(n)
j

s
(n)
j−1

(
L(s

(n)
j )− L(s)

)2
ds

 = σ2

∫ s
(n)
j

s
(n)
j−1

(
s

(n)
j − s

)
ds = σ2 ∆2

2
.

Equation (A.14) then becomes

E
[(
L∆
ε (T )− Lε(T )

)2
]
≤ σ2 ∆2

√
πε

n∑
j=1

(
Φ

(√
2

ε
(T − s(n)

j−1)

)
− Φ

(√
2

ε
(T − s(n)

j )

))

= σ2 ∆2

√
πε

(
Φ

(√
2

ε
(T − s(n)

0 )

)
− Φ

(√
2

ε
(T − s(n)

n )

))

= σ2 ∆2

√
πε

(
Φ

(√
2

ε
T

)
− 1

2

)
≤ σ2

2
√
π

∆

ε

2

which concludes the proof of the theorem for K3 := σ2

2
√
π

.

A.11 Proof of Proposition 4.3

PROOF. We notice that for b = e1, Xε(T ) and X∆
ε (T ) are given by the first coordinate of Yε(T ),

respectively Y∆
ε (T ). Without loss of generality, we assume Yε(0) = Y∆

ε (0) = 0, since at time t = 0 the
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two processes coincide and their difference is 0. By recursive substitution we get that

Y
(∆)
ε (T ) = Y

(∆)
ε (s

(n)
n ) =

n∑
j=1

(I + ∆A)n−j ep∆L
(∆)
ε (s

(n)
j ),

where we write ∆ in parentheses to indicate that the formula holds both for Yε and Y∆
ε . For Ã := I + ∆A,

as X(∆)
ε (T ) = e>1 Y

(∆)
ε (T ), we write that

E
[(
X∆
ε (T )−Xε(T )

)2
]

= e>1 E


 n∑
j=1

Ãn−jep
(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)2

 e1,

which means we only need the first coordinate of the expectation. We focus on it:

E


 n∑
j=1

Ãn−jep
(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)2


=

n∑
j=1

Ãn−jepe
>
p

(
Ã>
)n−j

E
[(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)2
]

+

+2
n∑
j=1
i=j+1

Ãn−jepe
>
p

(
Ã>
)n−i

E
[(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)(

∆L∆
ε (s

(n)
i )−∆Lε(s

(n)
i )
)]
. (A.15)

By use of equation (2.3), we find that

∆Lε(s
(n)
j ) = Lε(s

(n)
j )− Lε(s(n)

j−1)

= 2

∫ s
(n)
j−1

0

Φ

s(n)
j − s
ε

− Φ

s(n)
j−1 − s
ε

 dL(s) + 2

∫ s
(n)
j

s
(n)
j−1

Φ

s(n)
j − s
ε

− 1

2

 dL(s)

= 2

j∑
k=1

∫ s
(n)
k

s
(n)
k−1

Φ

s(n)
j − s
ε

− Φ

s(n)
j−1 − s
ε

 dL(s),

while, from equation (4.1), we get that

∆L∆
ε (s

(n)
j ) = L∆

ε (s
(n)
j )− L∆

ε (s
(n)
j−1)

= 2

j∑
k=1

Φ

s(n)
j − s

(n)
k−1

ε

− Φ

s(n)
j−1 − s

(n)
k−1

ε

∆L(s
(n)
k )

= 2

j∑
k=1

∫ s
(n)
k

s
(n)
k−1

Φ

s(n)
j − s

(n)
k−1

ε

− Φ

s(n)
j−1 − s

(n)
k−1

ε

 dL(s).
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The difference ∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j ) then becomes

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j ) = 2

j∑
k=1

∫ s
(n)
k

s
(n)
k−1

F (s)dL(s), (A.16)

F (s) := Φ

s(n)
j − s

(n)
k−1

ε

− Φ

s(n)
j−1 − s

(n)
k−1

ε

−
Φ

s(n)
j − s
ε

− Φ

s(n)
j−1 − s
ε

 .

By applying the integration by parts formula to the product F (s)L(s) for s(n)
k−1 ≤ s ≤ s

(n)
k , each of the

integrals on the right hand side of equation (A.16) can be rewritten as

∫ s
(n)
k

s
(n)
k−1

F (s)dL(s) = F (s
(n)
k )L(s

(n)
k )− 1

ε

∫ s
(n)
k

s
(n)
k−1

ϕ
s(n)

j − s
ε

− ϕ
s(n)

j−1 − s
ε

L(s)ds.

Moreover, by noticing that

F (s
(n)
k ) =

1

ε

∫ s
(n)
k

s
(n)
k−1

ϕ
s(n)

j − s
ε

− ϕ
s(n)

j−1 − s
ε

 ds,

equation (A.16) becomes

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )

= 2

j∑
k=1

1

ε

∫ s
(n)
k

s
(n)
k−1

ϕ
s(n)

j − s
ε

− ϕ
s(n)

j−1 − s
ε

(L(s
(n)
k )− L(s)

)
ds. (A.17)

Since the aim is to estimate equation (A.15), for the first sum, we proceed as in the proof of Proposition 4.1
and get that

E
[(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)2
]
≤ σ2

√
π

∆2

ε

{
Φ

(√
2

∆

ε
j

)
− 1

2
+ Φ

(√
2

∆

ε
(j − 1)

)
+

−Φ

(
−
√

2
∆

ε

)
+ e
−∆2

4ε2

(
Φ

(√
2

∆

ε

(
j − 1

2

))
− Φ

(
−
√

2

2

∆

ε

))}
,

and for ε small enough, we can write that for every j = 1, . . . , n,

E
[(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)2
]
≤ 3σ2

2
√
π

∆2

ε
. (A.18)

For the second sum of equation (A.15), by use of the Lipschitz property of ϕ (where the Lipschitz constant
is found by taking the second derivative equal to zero, and substituting the value found for s into the first
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derivative), we get

1

ε
ϕ

s(n)
j − s
ε

− 1

ε
ϕ

s(n)
j−1 − s
ε

 ≤ e−1/2

√
2π

∆

ε2
, (A.19)

Since the increments of a Lévy process are independent, from equation (A.17) we get that

E
[(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)(

∆L∆
ε (s

(n)
i )−∆Lε(s

(n)
i )
)]

= E

2

j∑
k=1

1

ε

∫ s
(n)
k

s
(n)
k−1

ϕ
s(n)

j − s
ε

− ϕ
s(n)

j−1 − s
ε

(L(s
(n)
k )− L(s)

)
ds ·

· 2
i∑

v=1

1

ε

∫ s
(n)
v

s
(n)
v−1

(
ϕ

(
s

(n)
i − w
ε

)
− ϕ

(
s

(n)
i−1 − w
ε

))(
L(s

(n)
v )− L(w)

)
dw


=

8σ2

ε2

j∑
k=1

∫ s
(n)
k

s
(n)
k−1

∫ w

s
(n)
k−1

ϕ
s(n)

j − s
ε

− ϕ
s(n)

j−1 − s
ε

 ·
·

(
ϕ

(
s

(n)
i − w
ε

)
− ϕ

(
s

(n)
i−1 − w
ε

))(
s

(n)
k − w

)
dsdw,

And, by use of equation (A.19), after calculation we get

E
[(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)(

∆L∆
ε (s

(n)
i )−∆Lε(s

(n)
i )
)]
≤ 2e−1σ2T

3π

∆4

ε4
. (A.20)

With equation (A.18) and (A.20), equation (A.15) is estimated by

E


 n∑
j=1

Ãn−jep
(

∆L∆
ε (s

(n)
j )−∆Lε(s

(n)
j )
)2


≤ 3σ2

2
√
π

∆2

ε

n∑
j=1

Ãn−jepe
>
p

(
Ã>
)n−j

+
2e−1σ2T

3π

∆4

ε4

n∑
j=1
i=j+1

Ãn−jepe
>
p

(
Ã>
)n−i

. (A.21)

Since we are interested only in the first coordinate of the expectation, we can look at the two summations
in equation (A.21) as two geometric sums. Then, to have convergence, we need the eigenvalues of
Ã = I + ∆A to have modulus bounded by 1. From the basic algebra, the eigenvalues of I + ∆A are of the
form 1 + ∆λ1, . . . , 1 + ∆λp. Moreover, because of the causality condition (3.4), we know that Re(λj) < 0
for every j = 1, . . . , p. To have

|1 + ∆λj | =
√

(1 + ∆Re(λj))
2 + ∆2Im2(λj) < 1, j = 1, . . . , p,
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we then need ∆ to be bounded as in the statement of the theorem. This condition guarantees the existence
of K̃4 and K̃5 as positive real constants, such that

e>1

n∑
j=1

Ãn−jepe
>
p

(
Ã>
)n−j

e1 ≤ K̃4 and e>1

n∑
j=1
i=j+1

Ãn−jepe
>
p

(
Ã>
)n−i

e1 ≤ K̃5.

Combining these bounds with equation (A.21), we obtain that

E
[(
X∆
ε (T )−Xε(T )

)2
]
≤ 3σ2

2
√
π
K̃4

∆2

ε
+

2e−1σ2T

3π
K̃5

∆4

ε4
,

And, by introducing K4 := 3σ2

2
√
π
K̃4 and K5 := 2e−1σ2T

3π K̃5, we conclude the proof.

A.12 Proof of Proposition 4.5

PROOF (SKETCH). We notice that, by means of equation (2.6), the terms of the sum in equation (4.1),
for j = 1, . . . ,m, 1 ≤ m ≤ n, can be expressed by

φε(s
(n)
m+1−j) = 2Φ

s(n)
m+1−j
ε

− 1 = 2Φ

(
{m+ 1− j}∆

ε

)
− 1, (A.22)

for m+ 1− j, an integer number, which shows that L∆
ε is the function of the ratio ∆

ε . For the increment
∆L∆

ε (t+ ∆) = L∆
ε (t+ ∆)− L∆

ε (t), by means of equation (4.1) and (A.22), we write

∆L∆
ε (t+ ∆) = 2

m+1∑
j=1

{
Φ

(
{m+ 2− j}∆

ε

)
− Φ

(
{m+ 1− j}∆

ε

)}
∆L(s

(n)
j ). (A.23)

In the proof of Proposition 2.2 we showed that the increments of Lε are not independent. The same trivially
holds also for L∆

ε . More precisely, we notice that, when ∆
ε > 1, only the last few terms of the sum

contribute in equation (A.23). But if ∆
ε ≤ 1, then more terms contribute, and ∆L∆

ε (t + ∆) depends on
increments way more in the past. On the other hand, the increment ∆L∆

ε (t+∆) is supposed to approximate
∆L(t + ∆) when ε and ∆ approach 0. As increments of Lévy processes are independent, then it seems
reasonable to think that ∆

ε ≤ 1 leads to some particular situations and the dynamics of X is not captured
by the Euler approach.
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