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Supplementary Statistical Methods and Data
Multivariate statistical analyses were performed in MATLAB version 2019a, and implemented using the Fathom (Jones, 2017) and Darkside (Kilborn, 2020) Toolboxes. To test the hypothesis of ‘no difference’ in beta-diversity among treatment factors (e.g. before the 2010 Deepwater Horizon oil spill [DWH] vs. after), we employed permutation-based multivariate analysis of variance (PERMANOVA; Anderson, 2001; McArdle and Anderson 2001). Multivariate dispersions were calculated using the permutation-based dispersion method (PERMDISP; Anderson et al., 2006), and the assumption of homogeneous dispersion was tested via a multivariate equivalent of Levene’s test (Anderson, 2006; Anderson et al., 2006; Anderson and Walsh, 2013). Species indicator values (IndVal; Dufrene and Legendre, 1997) were calculated to determine the most representative suites of taxa for each treatment level, and all PERMANOVA results were visualized using canonical analysis of principal coordinates (CAP; Anderson and Willis, 2003). Lastly, 10,000 iterations were used for all permutation-based methods, and p-values’ significance was determined using α = 0.05.
Benthic Foraminifera
Benthic foraminifera were extracted from sediment cores and identified to the lowest taxonomic level possible. A total of 463 taxa were enumerated, and after reduction to only those taxa present in at least 5% of all samples, 128 unique taxa remained for multivariate community analyses. Abundance data were square-root transformed to downweight highly abundant taxa, and ecological dissimilarity was assessed via the Morisita-Horn resemblance (Chao et al., 2005, 2006; Legendre and Legendre, 2012) measure. A before vs. after DWH analysis was conducted to examine potential changes in beta-diversity of foraminifera assemblages based on this treatment factor using the sediment cores described in Table S2. Lastly, time series plots of species richness and diversity (Shannon index) were created to visualize each cores’ biodiversity dynamics over time (Figure S1).
The results of the PERMANOVA based on samples designated as before 2010 and those after (excluding all 2010 samples) showed significant results (F = 3.8081; p = 0.0074; dfRx = 1, dfTotal = 39) indicating a non-random change in beta-diversity between the two time periods. A similar check of the dispersion (i.e., variability in foraminifera beta-diversity) using PERMDISP corroborated these results, and showed that the period after DWH (disp. = 0.2356) was 34% more variable than the period before (disp. = 0.1887) with respect to the underlying composition and abundance of taxa in the cores’ samples (F = 11.0; p = 0.0080; dfRx = 1, dfTotal = 39). Twenty taxa were selected as indicators across both factor levels (Table S3) and all were subsequently used in a CAP visualization of the separation among the two levels.
Megafauna
Benthic megafauna data were used for multivariate analyses of community composition based on remotely operated vehicle surveys conducted by Valentine and Benfield (2013) in 2010 (n = 19) and McClain et al. (2019) in 2017 (n = 17). In both years, the data were collected at 500 m (n2010 = 9; n2017 = 9) and 2000 m (n2010 = 10; n2017 = 8) distant from a reference point near the DWH wellhead. For the purposes of this investigation, grouping treatments were assigned by year of sampling and differences in beta-diversity were assessed via PERMANOVA, PERMDISP, and IndVal, while visualization was achieved via CAP. Forty taxa were included in the original dataset and were reduced to the 15 that were present in at least 10% of samples. Abundance data were square-root transformed and the Morisita-Horn resemblance measure was used to assess ecological dissimilarity among samples.
The PERMANOVA results indicated that there was a non-random difference (F = 37.85; p = 0.0001; dfRx = 1, dfTotal = 34) between the megafaunal communities sampled in 2010 vs. those in 2017. Calculations of multivariate dispersions using PERMDISP showed that the variability in beta-diversity (i.e., variability in megafaunal community variability) declined significantly (F = 94.01; p = 0.0001; dfRx = 1, dfTotal = 34) by 77% between 2010 (disp. = 0.4955) and 2017 (disp. = 0.1110). This implies that the post-DWH period’s megafaunal communities were becoming homogenized after DWH. When examining the IndVal table for this faunal group (Table S4), it becomes clear that two taxa in particular (P. armatus, G. aculeata) are strongly associated with the 2017 samples and, in fact, are essentially “perfect” indicators for that period displaying high fidelity to the 2017 samples exclusively, as well as high specificity within that group’s samples (i.e., found in a very high proportion of the factor level’s observations). The PERMANOVA results were visualized via CAP for all taxa included in these analyses (Figure S5).
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Supplementary Tables
Supplementary Table S1. Vulnerability (V) and resilience (R) rankings (H=high, M=medium, L=low) of each representative taxon organized by hierarchical group including the factors contributing to the ranking and associated references.
	Hierarchical
 Group
	Taxon
	V
	R
	Contributing Factors
	Associated Reference(s)

	Microbes
	Alpha proteobacteria
	M
	M
	Overlap of habitat and MOSSFA,
 short-life span, abundance, life span, frequency of reproduction, ability to respond to hydrocarbons, detoxifying capacity, co-varying stressors
	Mason et al., 2014; Kleindienst et al., 2016; Yang et al., 2016 A,B; Overholt et al., 2019

	
	Beta proteobacteria
	L
	L
	
	

	
	Gamma proteobacteria
	L
	H
	
	

	
	Delta proteobacteria
	M
	H
	
	

	
	Epsilon Proteobacteria
	L
	H
	
	

	
	(AOA) Archaea
	L
	L
	
	

	Foraminifera
	Bulimiina spp.
	L
	H
	Ability to avoid hydrocarbons, spatial overlap of populations with toxic components, duration of exposure, abundance, lifespan, co-varying stressors
Opportunistic in low Oxygen 
environments
	Mojtahid et al., 2006; Schwing et al., 2015; Schwing et al., 2017B
 Schwing et al., 2018: Schwing et al., 2020B,C

	
	Bolivina spp.
	M
	M
	Low densities during DWH,
 tolerant of high organic deposition, higher abundances following DWH
	

	
	Globocassidulina spp.
	L
	H
	Opportunistic in low Oxygen environments
	

	
	Uvigerina spp.
	M
	M
	Low densities during DWH, 
tolerant of high organic deposition, higher abundances following DWH
	

	Meiofauna
	Harpacticoida
	H
	L
	Ability to avoid hydrocarbons, life span, co-varying stressors
Sensitive to pollution
	Montagna et al., 2013; Baguley et al., 2015;
 Reuscher et al., 2017; Montagna and Girard 2020;

	
	Nematoda
	L
	H
	Opportunistic in polluted environments
	

	Macrofauna
	Cirratulidae
	M
	M
	Ability to avoid hydrocarbons, spatial overlap of populations with toxic components, duration of exposure, abundance, life span, co-varying stressors
	Montagna et al., 2013;Washburn et al., 2016;  Montagna et al., 2017; Reuscher et al., 2017; Washburn et al., 2017; Montagna and Girard 2020;

	
	Dorvilleidae
	L
	H
	
	

	
	Nannastacidae
	H
	L
	
	

	
	Nemertea
	M
	M
	
	

	
	Oedicerotidae
	H
	L
	
	

	
	Prochaetodermatidae
	M
	M
	
	

	
	Sphyrapidae
	L
	H
	
	

	
	Syllidae
	M
	M
	
	

	
	Thyasiridae
	L
	H
	
	

	
	Typhlotanaidae
	H
	L
	
	

	Megafauna
	Chacion spp.
	H
	M
	Ability to avoid hydrocarbons, spatial overlap of populations with toxic components, duration of exposure, abundance, life span, co-varying stressors
high abundance at wellhead 
(associated with oil chemical cues),
post-DWH homogeneity between sites
	Valentine and Benfield, 2013; McClain et al., 2019

	
	Cucumbers
	H
	M
	
	

	
	Giant isopods
	L
	M
	
	

	
	Ophiuroids
	H
	L
	
	

	
	Seep mussels
	L
	M
	
	

	
	Seep tubeworms
	L
	M
	
	

	Corals
	Callogorgia spp.
	L
	M
	Ability to avoid hydrocarbons, spatial overlap of populations with toxic components, duration of exposure, abundance, life span, co-varying stressors, modularity
Branch loss, hyrdozoan colonization, 
slow branch regrowth
	White et al., 2012; Hsing et al., 2013; 
Fisher et al., 2014A,B; White et al., 2014;
 DeLeo et al., 2015; Girard and Fisher, 2018; 
Girard et al., 2019; Montagna and Girard, 2020)

	
	Leiopathes spp.
	M
	L
	
	

	
	Lophelia spp.
	M
	H
	
	

	
	Paramuricea spp.
	H
	L
	
	

	
	Swiftia spp.
	H
	M
	
	

	Fish
	Ophidiidae
	M
	M
	Small size, likely MOSSFA coverage 
of habitat, short life span, ability to avoid hydrocarbons, co-varying stressors
	Powell et al., 2013; Limouzy-Paris et al., 1994





Supplementary Table S2. Each column represents a sediment core sampled for foraminifera (Schwing et al., 2018), and they are labeled with the two-digit month and year of collection, along with the site ID (format: MMYY-SampID). Years were estimated from samples’ depth increments (mm), and which were converted to dates using short-lived radioisotope sediment-dating methods (Brooks et al., 2015; Larson et al., 2018). The two samples from 2010 denoted by * were removed for multivariate analyses of “before” and “after” the DWH event.
	 
	Number of Samples Analyzed
	 

	Year
	0814-DSH08
	0814-DSH10
	0814-PCB06
	0815-DWH01
	0815-SW01
	Total

	2015
	-
	-
	1
	2
	2
	5

	2014
	1
	3
	1
	2
	1
	8

	2013
	1
	2
	1
	1
	2
	7

	2012
	2
	1
	1
	-
	-
	4

	2011
	1
	-
	-
	-
	-
	1

	2010
	-
	1*
	1*
	-
	-
	2

	2009
	-
	-
	1
	-
	-
	1

	2008
	-
	1
	-
	1
	-
	2

	2007
	-
	-
	-
	-
	1
	1

	2006
	-
	-
	-
	-
	-
	0

	2005
	1
	1
	-
	-
	1
	3

	2004
	-
	-
	-
	-
	-
	0

	2003
	-
	-
	-
	-
	-
	0

	2002
	-
	-
	-
	-
	-
	0

	2001
	-
	-
	1
	-
	-
	1

	2000
	1
	-
	-
	-
	1
	2

	 
	
	
	
	
	
	

	1994
	1
	-
	-
	-
	-
	1

	 
	
	
	
	
	
	

	1991
	-
	-
	1
	-
	-
	1

	 
	
	
	
	
	
	

	1985
	-
	-
	-
	1
	-
	1

	 
	-
	-
	-
	-
	-
	0

	1981
	-
	-
	1
	-
	-
	1

	 
	-
	-
	-
	-
	-
	0

	1977
	-
	-
	-
	1
	-
	1

	Total 
	8
	9
	9
	8
	8
	42



Supplementary Table S3: Indicator Values (IndVal) for the top 20 benthic foraminifera taxa selected to represent the time periods before and after the DWH event. Indicator values range from 0-100, and are interpreted as percentages where IndVal = 100 represents a “perfect” indicator for a particular factor level.
	Representative Taxa
	IndVal     
	p-Value
	Group

	'Cibicidoides pachyderma'       
	62.2
	0.0031
	Before

	'Chilostomella oolina'          
	61.0
	0.0020
	Before

	'Osangularia culter'            
	59.7
	0.0078
	Before

	'Bulimina striata mexicana'       
	57.3
	0.0273
	Before

	'Bolivina lowmani'               
	55.6
	0.0017
	Before

	'Lenticulina convergens'        
	55.0
	0.0015
	Before

	'Cassidulina reniforme'         
	54.9
	0.0108
	Before

	'Oridorsalis tenerus'           
	54.7
	0.0119
	Before

	'Nuttalides rugosus'            
	53.1
	0.0121
	Before

	'Laticarinina pauperata'        
	42.8
	0.0426
	Before

	'Sigmoilopsis schlumbergeri'    
	36.1
	0.0175
	Before

	'Bolivina barbata'                  
	20.0
	0.0463
	Before

	'Cribrostomoides subglobosum'    
	63.1
	0.0038
	After

	'Subreophax monile'              
	58.7
	0.0106
	After

	'Veleroninoides wiesneri'        
	56.6
	0.0252
	After

	'Trochammina ochracea'            
	53.4
	0.0089
	After

	'Testulosiphon indivisus'        
	44.3
	0.0461
	After

	'Rhizammina algaeformis'         
	42.5
	0.0229
	After

	'Adercotryma glomerata'          
	40.9
	0.0260
	After

	'Reophax scorpiurus'             
	31.5
	0.0485
	After


Supplementary Table S4. Indicator Values (IndVal) for the top 11 megafauna taxa selected to represent the sampling periods 2010 (Valentine and Benfield, 2013) and 2017 (McClain et al., 2019). Indicator values range from 0-100, and are interpreted as percentages where IndVal = 100 represents a “perfect” indicator for a particular factor level.
	Representative Taxa
	IndVal
	p-Value
	Group

	'Asteroidea_spp'
	57.9
	0.0001
	2010

	'Nematocarcinus_rotundus'
	47.4
	0.0010
	2010

	'Elpididae_spp'
	26.3
	0.0457
	2010

	'Plesiopenaeus_armatus'
	100.0
	0.0001
	2017

	Glyphocrangon_aculeata'
	94.1
	0.0001
	2017

	'Galatheoidea'
	61.5
	0.0002
	2017

	Trachonurus_villosus'  
	52.9
	0.0002
	2017

	Dicrolene_introniger'  
	47.1
	0.0017
	2017

	'Zoarcidae_sp_K'
	47.1
	0.0015
	2017

	'Chaceon_fenneri'
	35.3
	0.0058
	2017

	'Paguroidea_sp_A'
	25.7
	0.0481
	2017



Supplementary Figures
[image: Macintosh HD:Users:Patty:Documents:BP:Manuscripts:2020 Benthic Core 3 synthesis :Figures:Figure S1_Foram Time Series.pdf]Supplementary Figure S1. A time-series of total benthic foraminifera mean values for richness (A), Shannon diversity (B) and evenness (C) utilizing data from five DWH-impacted sites included in Schwing et al., (2018A) and short-lived radioisotope dates from Brooks et al., (2015) and Larson et al., (2018).
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[bookmark: _GoBack]Supplementary Figure S2. Canonical analysis of principal coordinates (CAP) of total benthic foraminifera beta-diversity from sediment core layers collected at 5 DWH-impacted sites using a before (pre-DWH; red) and after (post-DWH: green) treatment.  Data were from Schwing et al. (2018), Brooks et al. (2015) and Larson et al. (2018).  Black vectors represent the relative contribution of each taxa to the separation of groups along the horizontal axis. The vertical axis is jittered (i.e., arbitrary) to aid in visualization, and the borders of each data cloud were drawn using convex-hulls.
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Supplementary Figure S3. A time series of mean values for meiofauna abundance (A), Shannon diversity (B), nematode:copepod ratio (C), and evenness (D). Error bars represent standard deviation.  Data were utilized from the northern Gulf of Mexico Continental Slope Study (NGOMCSS, Pequagnat et al. 1990), the Deep Gulf of Mexico Benthos Program (DGoMB; Baguley et al. 2006; Rowe and Kennicutt 2008), and post-DWH, Natural Resource Damage Assessment (NRDA; (Montagna et al. 2013; Reuscher et al. 2017).
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Supplementary Figure S4. A time series of mean values for macrofauna abundance (A), Shannon diversity (B) and evenness (C).  Data were utilized from the NGOMCSS (Gallaway 1988), DGoMB (Haedrich et al. 2008; Rowe and Kennicutt 2008) and post-DWH, Natural Resource Damage Assessment (Montagna et al. 2013; Washburn et al. 2017).
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Supplementary Figure 5. Canonical analysis of principal coordinates (CAP) of benthic megafauna from 2010 (red; Valentine and Benfield, 2013) and 2017 (green; McClain et al., 2019).  Black vectors represent the relative contribution of each taxa to the separation of groups along the horizontal axis. The vertical axis is jittered (i.e., arbitrary) to aid in visualization, and the borders of each data cloud were drawn using convex-hulls.
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