Supplemental Material to

The phosphatase PP2A interacts with ArnA and ArnB to regulate the oligomeric state and the stability of the ArnA/B complex

Xing Ye¹, Marian Samuel Vogt², Chris van der Does¹, Wolfgang Bildl³, Uwe Schulte^{3,4,5}, Lars-Oliver Essen^{2,6} and Sonja-Verena Albers^{1,4*}

Figure S1 Protein loading controls. PTPHA and PP2AHA mutants were grown in nutrient rich and starvation medium for 4 h. Samples were collected at different time points (0 h, 0.5 h, 1.0 h, 1.5 h, 2.0 h and 4.0 h) and loaded by SDS-PAGE. The coomassie-stained gels which were used as a control for equal loading of the experiments depicted in Figure 1C and 1D are shown.

Figure S2 Expression of *flaB* on RNA and protein level in PTPHA and PP2AHA mutants. PTPHA and PP2AHA mutants were grown in nutrient rich and starvation medium for 4 h. Samples were collected at different time points (0 h, 0.5 h, 1.0 h, 1.5h, 2.0 h and 4.0 h) and analyzed by qRT-PCR and Western blotting analysis. Left panel in (A) and (B), qRT-PCR analysis of *flaB*; Right panel in (A) and (B), Western blotting analysis of FlaB. Relative transcription level was normalized to *secY*. The values represent fold changes (mean \pm SD) compared with the control from biological triplicates. Western blotting analysis was quantified and given as means \pm SD from biological triplicates.

Figure S3 Localization of PTP and PP2A in *S. acidocaldarius* cells. Samples were collected after 0.5 h growth in nutrient starvation medium. Ultracentrifugation was performed to separate cytoplasm and membrane fractions that were further analyzed by Western blotting analysis with α -HA antibody.

Figure S4 Elution fractions of MW001, PTPHA and PP2AHA from affinity purification with anti-HA magnetic beads were separated on SDS-PAGE. Protein bands were visualized by silver staining. The small filled arrow indicates the position of PTP-HA, and the small non-filled arrow indicates the position of PP2A-HA. Additional bands could be identified at the theoretical weights of a conserved putative ATP/GTP binding protein (Saci_1281, 28.4 kDa), a universal stress protein (Saci_0887, 14.1 kDa) and the archaellum regulators ArnA (22.9 kDa) and ArnB (42.8kDa).

Figure S5 ArnA/B complex was not oligomerized in the presence of ArnC and ATP and absence of Mn²⁺. The formed ArnA/B complex was incubated with ATP and Mn²⁺ (grey line) or in the presence of ArnC and EDTA (black line) at 55 °C for 30 min and was loaded on a Superdex 200 increase (10/300) size exclusion column. The upper panel depicts the elution pattern observed at 280 nm. Elution fractions were separated on SDS-PAGE and analyzed by Coomassie staining. The SDS-PAGE of the protein fractions around the peaks observed are shown in the lower panel.

Strains/plasmids	Genotype	Source/Reference
Strains		
Escherichia coli		
Top10	F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ ⁻	Invitrogen
ER1821	λ - F- glnX44 e14- (McrA-) rfbD1 endA1 thi-1 Δ (yjiT- opgB)114::IS10 (EcoKI R- M- McrBC- Mrr-) + rpoS393(am) creC510 lrhA::IS3 ydeN::IS10	New England Biolabs
Rosetta (DE3) pLysS <i>Sulfolobus</i> acidocaldarius	$F^- ompT hsdS_B(r_B^- m_B^-) gal dcm$ (DE3) containing the pLysSRARE plasmid (Cam ^R)	Novagen
MW001	Sulfolobus acidocaldarius DSM639 ∆pyrE	(Wagner et al., 2012)
MW351	MW001 $\Delta saci1210$ ($\Delta arnA$)	(Reimann et al., 2012)
MW332	MW001 Δsaci_1171Δsaci_1180 (ΔarnR ΔarnR1)	(Lassak et al., 2013)
MW801	Chromosomally HA-tagged <i>saci0884</i> (<i>saci_pp2a</i>) gene at the C-terminus	This study
MW802	Chromosomally HA-tagged <i>saci0545</i> (<i>saci_ptp</i>) gene at the C-terminus	This study
Plasmids		
pSVA407	Gene targeting plasmid, pGEM-T Easy backbone, <i>pyrEFSSO</i> and <i>lacSSSO</i> cassette; single crossover method	(Wagner et al., 2012)
pSVA5102	<i>saci0884 (saci_pp2a)</i> with HA tag in C-terminal, cloned into pSVA407 using <i>NcoI</i> and <i>Bam</i> HI	This study
pSVA5103	<i>saci0545</i> (<i>saci_ptp</i>) with HA tag in C-terminal, cloned into pSVA407 using <i>Nco</i> I and <i>Bam</i> HI	This study
pSVA1009	<i>saci1193 (arnC)</i> with N-terminal His-tag cloned into pETDuet-1 with <i>BcII/Bam</i> HI and <i>Pst</i> I	(Reimann et al., 2012)
pSVA1036	<i>arnB</i> with C-termial His-tag cloned into pETDuet-1 with <i>NcoI</i> and <i>Bam</i> HI	(Reimann et al., 2012)
pSVA1037	<i>saci_pp2a</i> with C-termial His-tag cloned into pETDuet-1 with <i>NcoI</i> and <i>Bam</i> HI	(Reimann et al., 2012)
р7ХС3Н	FX cloning expression plasmid with C-term His tag	(Geertsma and Dutzler, 2011)
p7XC3S	FX cloning expression plasmid with C-term Strep tag	(Quax et al., 2018)
p7XNS3 pSVA5131	FX cloning expression plasmid N-term Strep tag arnA with N-terminal HA tag and C-terminal His tag cloned into p7XC3H by FX cloning method	This study This study

Table S1 Strains and plasmids in this study

pSVA5136	arnA with N-terminal Strep tag cloned into p7XNS3	This study
	by FX cloning method	
pSVA5137	arnB with C-terminal Strep tag cloned into p7XCS3	This study
-	by FX cloning method	

Table S2 Primers used in this study

Primer	Sequence (5'- 3')	Purpose
паше	numans for nSVA5102	
7200	primers for psv A5102	agei0894 HA upstr fry
7201		sacioso4-HA upstr Iw
/301		sacioso4-HA upsir rev of
7202		
/302	GUILGUILGAGIACUGIAIGACGIILLGGA	saciu884-HA downstr iw ol
7202		:0004 II 4 1
/303		saciu884-HA downstr rev
1601	TICCIGCCCACIGATATICC	<i>saciu884-HA</i> check primer fw
1602	CGGTTGGTTAAATCAATTAG	saci0884-HA check primer
		rev
	primers for pSVA5103	
7304	GAGCCATGGGAACAGCGGATCTTCAGAGT	<i>saci0545-HA</i> upstr fw
7305	CGTAGTCCGGAACGTCATACGGGTATAGTATC	saci0545-HA upstr rev ol
	TTCCATTTATCTTTCATCTTTTC	I
7306	GTATGACGTTCCGGACTACGCGTAAATGGAA	<i>saci0545-HA</i> downstr fw ol
	GATTTTATGATAGAATTTCTTTC	
7307	GAGGGATCCAGCGACTCCGATAGTAGGTTTG	saci0545-HA downstr rev
1553	AACTCATAGCGTGAGATCC	saci0545-HA check primer
		fw
1554	ATCCAGCTAATGCATGTTCC	<i>saci0545-HA</i> check primer rev
1391	GTAGTCCGGAACGTCATAC	HA tag primer rev
	primers for pSVA5131	
0105	ATATATGCTCTTCTAGTTACCCATATGACGTT	saci1210 expr fw
9137	CCGGACTACGCG	1 0
	primers for pSVA5136	
0121	ATATATGCTCTTCTAGTACGTGGAAATGTAAT	saci1210 expr fw
9121	TTATGCGGTTAT	-
9122	TATATAGCTCTTCATGCCTCCTTTAATATTCGT	saci1210 expr rev
	ACTATTGTCTG	-
	primers for pSVA5137	
7266	ATATATGCTCTTCTAGTACCATATCAGTTAAA	saci1211 expr fw
/366	GCCGAATTAAGT	
7267	TATATAGCTCTTCATGCAGACCTCAACTTCTT	saci1211 expr rev
/30/	AGTAACTTCACT	
	primers qRT-PCR	
7314	TTGTCCCGGTTCTTCCTATG	<i>ptp</i> -qRT-PCR-fw
7315	GCCGGAAGAGTTTGAGATTG	<i>ptp</i> -qRT-PCR-rev
5411	GAATCATGAAAGTCCACTTACAAAC	pp2a-qRT-PCR-fw
5412	AAACCTCCATGCATACAAAG	<i>pp2a</i> -qRT-PCR-rev
1480	CCTGCAACATCTATCCATAACATACCGA	<i>secY</i> -qRT-PCR-fw
1481	CCTCATAGTGTATATGCTTTAGTAGTAG	secY-qRT-PCR-rev

References Supplementary Information

- Geertsma, E. R., and Dutzler, R. (2011). A versatile and efficient high-throughput cloning tool for structural biology. *Biochemistry* 50, 3272–3278.
- Lassak, K., Peeters, E., Wróbel, S., and Albers, S. V. (2013). The one-component system ArnR: A membrane-bound activator of the crenarchaeal archaellum. *Mol. Microbiol.* 88. doi:10.1111/mmi.12173.
- Quax, T. E. F., Altegoer, F., Rossi, F., Li, Z., Rodriguez-Franco, M., Kraus, F., et al. (2018). Structure and function of the archaeal response regulator CheY. *Proc. Natl. Acad. Sci.* 115, E1259–E1268.
- Reimann, J., Lassak, K., Khadouma, S., Ettema, T. J. G., Yang, N., Driessen, A. J. M., et al. (2012). Regulation of archaella expression by the FHA and von Willebrand domaincontaining proteins ArnA and ArnB in Sulfolobus acidocaldarius. 86, 24–36. doi:10.1111/j.1365-2958.2012.08186.x.
- Wagner, M., Wolferen, M. Van, Wagner, A., Lassak, K., Meyer, B. H., Reimann, J., et al. (2012). Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. 3, 1–12. doi:10.3389/fmicb.2012.00214.