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I: Weather and climate change effect on air quality

Weather hugely impacts ambient air quality, which can add another layer of complexity to air quality analysis. Wind can transport air pollution away from sources, so it can dilute pollution in certain areas and concentrate pollution in others (Jacob 1999). Temperature inversions, where a layer of warm air traps in colder air, also impact pollution transport (Jacob 1999). Temperature inversions result in stable air, meaning little to no wind, and air pollution can build up. Temperature also affects reaction rates of air pollutants, most notably O3 (Cox and Chu 1996). Ozone formation is strongly correlated with temperature, so more O3 forms on warmer days. 
Full-physics models calculate how emissions and weather interact in space and time to affect air quality. Using Eulerian air quality models in this research space has shown that the spatial distribution of benefits depends on wind patterns. Modelling air quality over Wisconsin, Plachinski et al. (2014) observed that wind and other atmospheric conditions of the Great Lakes region affected ambient concentrations. Abel et al. (2019) found that the largest pollution decreases occurred close to and downwind of coal power plants. Another analysis only considered the population exposure of air pollution downwind of power plants, under the assumption that this is where all produced pollutants were transported (Buonocore et al. 2016). An analysis of California’s AB 32 legislation found discrepancies in air quality outcomes across air basins when considering the whole state, since air basins have distinct wind patterns that can transport or trap air pollutants (Zapata, Muller, and Kleeman 2013). The San Joaquin Valley has unique meteorology and topography that trap wind and air pollution, which contributed to the air pollution increases found in that study. 
Since weather has such a significant impact on air quality, consideration of how global climate change will modify weather patterns is another important factor when evaluating future air quality. Climate change and air quality influence each other in numerous, but sometimes opposing, ways (Fiore, Naik, and Leibensperger 2015). Atmospheric chemists are in conclusion that a warmer climate will lead to more O3 formation (Gonzalez-Abraham et al. 2015; Jacob and Winner 2009; Weaver et al. 2009). How climate change will affect PM2.5 concentrations, however, is less certain (Jacob and Winner 2009). Increased frequency and intensity of droughts and wildfires will likely increase PM2.5 emissions (Spracklen et al. 2009). Climate change’s impact on secondary PM2.5 depends on the type of fine particulate matter, as some species may have higher rates of formation in warmer temperatures (Jacob and Winner 2009). Additionally, the precipitation and ventilation sinks of PM2.5 will also be impacted by climate change, although by what magnitude is highly uncertain and will likely vary spatially (Jacob and Winner 2009). Furthermore, air pollutants can either contribute to or minimize global warming. Black carbon and O3 have positive radiative forcing, whereas other air pollutants, like sulfate particulate matter, can have a cooling effect on the climate  (Unger 2012). 
Global warming induced weather changes also exacerbate air quality through increased electricity demand. Hotter days, which will likely occur more often in the future, have higher electricity demand due to increased usage of air conditioning (Meier et al. 2017). Higher electricity demand increases energy sector emissions and worsens air quality (Abel et al., 2018b; Meier et al., 2017). These weather conditions also coincide with the weather that exacerbates air quality: hot, stagnant air. Although not included in this literature since they do not model a greenhouse gas emissions mitigation strategy, a vein of air quality co-benefits research has considered climate change’s impact on electricity demand and air quality by modeling mid-21st century climate scenarios. Chen et al. (2015) predict the climatic warming will increase NOx emissions in the Mid-Atlantic region, even though more stringent climate change and pollutant control policies will be implemented. This is expected to occur especially on warmer days, which is when O3 episodes are likely to occur. This study is a worst-case scenario, as no new renewable energy or closed power plants were included in the scenario, but it does demonstrate the complexities that other research studies ignore by modeling perturbed emissions across identical weather scenarios. Abel et al. (2018a) concluded that 3.8% of PM2.5 concentrations and 6.7% of O3 concentrations in 2050 would be contributable to the increased use of air conditioning in response to the higher temperatures. 

II: Non-U.S. based research

Non-U.S. and global analyses are listed in Table S1, color coded to reflect the category of research. Six evaluate climate policies and the other six consider urban transportation climate mitigation strategies. Most focus on sub-regions of the world, with only two global analyses (McCollum et al., 2013). Five evaluate the air quality effects of EV adoption and/or other clean transportation policies in cities and countries in Europe and Asia (Soret, Guevara, and Baldasano 2014; Ferrero, Alessandrini, and Balanzino 2016; Li et al. 2016; Liang et al. 2019; Wolkinger et al. 2018). Similar to the U.S. based transportation analyses, these focus on limited geographic domains including single cities and regions. The three other international studies evaluate numerous policies and energy futures for Beijing, India, Eastern Africa, and worldwide (Zhao, Xu, and Hao 2011; McCollum et al. 2013; K. Chen et al. 2019; Van De Ven et al. 2019). 
Some of the models used by the international research studies are also used in U.S. based research and thus were discussed in Section IV. These include GREET (Liang et al. 2019), MOVES (Lin et al. 2020), CMAQ (Zhao, Xu, and Hao 2011; Soret, Guevara, and Baldasano 2014; Li et al. 2016; K. Chen et al. 2019), and WRF-Chem (Peng et al. 2018). In addition, the following air quality models were used only in international/global research studies:
· Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) (Amann et al. 2009) is an international reduced-from air quality model that is an evolution of the earlier RAINS model. It is used by only one study (McCollum et al. 2013). 
· TM5-Fast Scenario Screening tool (TM5-FASST) (Van Dingenen et al. 2018) is another reduced-from air quality source-receptor model and was used in one study (Vandyck et al. 2018). 
· Graz Lagrangian Model (GRAL) is a lagrangian dispersion model, the only langrangian model used across all studies, and was utilized only by Wolkinger et al. (2018). 
Much of the international research in this field has focused on India or China. Developing countries, like countries in Africa, India and until recently China, rely on solid fuels (e.g. wood, kerosene, charcoal) for heat and light. These fuels emit a lot of particulate matter and other health impacting air pollutants in indoor living spaces, making indoor smoke exposure from solid fuels the greatest global environmental health burden (Lelieveld et al. 2015). Electrification scenarios that include reducing traditional biomass burning drastically improve indoor air quality and health outcomes (Chen et al., 2019; Peng et al., 2018; Zhao et al., 2011). Chen et al. (2019) found reducing solid fuel burning most benefited air quality improvement across a variety of measures to reduce air pollution. Peng et al. (2018) reported that electrification in China resulted in improved air quality and public health benefits when coupled with decarbonization of the electricity sector, from 75% coal powered to 52%. In eastern Africa, energy technology subsidies result in more GHG emissions reductions than expansion of biomass resources and improvement in both household air pollution and ambient air quality (Van De Ven et al. 2019). 
A subset of international health co-benefits research evaluates the human health co-benefits of the international Paris climate agreement (Sampedro et al. 2020; Vandyck et al. 2020; Markandya et al. 2018; Shindell, Lee, and Faluvegi 2016; Rauner, Hilaire, et al. 2020; Rauner, Bauer, et al. 2020; Vandyck et al. 2018). Most of these papers do not fit in our scope, since they evaluate the achievement of limiting warming by 2°C and not specific decarbonization measures. One paper in this research subset, however, does evaluate Nationally Determined Contributions (NDC) by individual countries (Vandyck et al. 2018). This study found air quality co-benefits for most pollutants and regions, but with some variability. For example, reducing the combustion of fossil fuels for energy directly reduced GHGs and criteria air pollutants, but other climate mitigation measures (i.e. biomass energy, biofuels, and land use change) had more complex air quality results. Overall, by 2030 the NDCs resulted in significant localized decreases in PM2.5 concentrations and a widespread decrease in the ozone mixing ratio. These air quality improvements led to 71 to 99 thousand avoided premature deaths globally in 2030, compared to the reference case of current climate policies. 
One global study concluded that climate mitigation strategies can improve air quality more than current and planned pollution controls, because decarbonization can so greatly reduce PM2.5 concentrations  (McCollum et al. 2013). Furthermore, pursuing only climate mitigation measures is less costly than pursuing climate and pollution controls simultaneously. 
The non-U.S. focused transportation studies align with the conclusions of the transportation research based in the United States. For example, a study of vehicle electrification in China found larger health benefits in megacities, driven by the large population exposure reduction (Liang et al. 2019). This paper also found spatial shifts of air pollution from transportation corridors to areas nearby power plants. International research also found transportation electrification to increase O3 formation in urban centers and over freeways due to the reduction of O3 scavenging by NOx. Research in Taiwan found overall decreases in O3 concentrations except for a 2 ppb increase downtown metropolitan Taipei (Li et al. 2016) while a study in Spain also reported overall O3 decreases with a 2 ppb increase in Madrid and Barcelona downtown areas (Soret, Guevara, and Baldasano 2014). Overall O3 concentrations decreased on peak pollution days in the international studies as well. In Taiwan, 100% vehicle electrification would significantly reduce O3 air pollution episodes on average by 7 days per year and in the most polluted regions by 35 days per year (Li et al. 2016). In an Italian study, air quality improvements were particularly evident during air pollution episodes, even with the lowest EV penetration scenario of 25% (Ferrero, Alessandrini, and Balanzino 2016). 
Similar to Grabow et al. (2012), a study that evaluated the co-benefits of urban transportation climate mitigation policies in three Austrian cities found increased physical activity reduced premature mortality more than the air quality improvement (Wolkinger et al., 2018).  






	Authors
	Study Purpose
	Scale
	Emissions model type
	Air chemistry model type

	Zhao et al., 2011
	Compare five future energy scenarios in Beijing
	International Subnational
	Emissions inventory
	Full physics

	McCollum et al., 2013
	Several hundred alternate energy futures with different air pollution, energy security, and climate change policy prioritizations 
	Global
	Integrated assessment model
	Reduced form

	Soret et al., 2014
	Compare three vehicle electrification scenarios in Barcelona and Madrid
	International Metropolitan
	Mobile emissions simulator
	Full physics

	Ferrero et al., 2016
	EVs impact on air quality near a highway in Milan, Italy 
	International Metropolitan
	Emissions inventory

	Full physics

	Li et al., 2016
	Replace 100% light duty conventional vehicles with EVs in Taiwan under different electricity generation scenarios
	International National
	Emissions inventory
	Full physics

	Peng et al., 2018
	Evaluate the effects of electrification and moderate decarbonization in China
	International 
National
	Emissions inventory
	Full physics

	Vandyck et al., 2018
	Quantify the co-benefits of Nationally Determined Contributes (NDCs) from the Paris Agreement
	Global
	Partial equilibrium economics model
	Reduced form

	Wolkinger et al. 2018
	Evaluate the co-benefits of low emission vehicles and active transport for three Austrian cities
	International National
	Transport modeling tool, Mobile emissions simulator
	Lagrangian dispersion

	Chen et al., 2019
	Compare fourteen future energy use scenarios in India 
	International National
	Emissions inventory
	Full physics

	Van de Ven et al., 2019
	Assess land policies and technological subsidies on climate and air quality goals in Eastern Africa
	International 
	Computable general equilibrium model
	Reduced form

	Liang et al., 2019
	Compare air quality impacts of EV penetration scenarios in China
	International National
	Emissions inventory, Mobile emissions simulator
	Full physics

	Lin et al., 2020
	Evaluate the air quality effects of EV adoption and charging in Taiwan
	International National
	Emissions inventory, Mobile emissions simulator
	Full physics


Table S1. Scope and methods of global co-benefits research. The table is color coded to specify the type of climate mitigation strategy or policy evaluated in the studies: green indicates climate policies and orange indicates transportation.
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