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Tables and Figures labeled “SM” appear in the methods section while “SR” appear in the results section. 

Methods: Supplementary details 

Developing production and retirement statistics for futures with 
and without SGMA 
We applied the most current version (as of Summer 2018) of the Statewide Agricultural Production 
(SWAP) model  to evaluate permanent and temporary land retirement under alternative SGMA scenarios. 1

SWAP is a regional agricultural production and economic optimization model that simulates the markets 
for California crops. SWAP is linked to regional ground and surface water data and used to simulate the 
response of the agricultural sector to changes in groundwater availability and cost caused by 
implementation of SGMA. While the model structure and calibration procedure are both well developed 
(1, 2)​, it was necessary to specify alternative SGMA implementation scenarios, changes in water 
availability under climate change, and to conduct some additional post-processing to infer permanent and 
temporary land retirement and the overall impact of SGMA.  

1 ​http://swapmodel.com/detail 

2 

https://www.zotero.org/google-docs/?dZYLsj
http://swapmodel.com/detail


SGMA scenarios to represent in SWAP 
We developed three scenarios in the SWAP model representing baseline future conditions without 
SGMA, future conditions under SGMA with significant investments in additional water capture and 
storage, and future conditions under SGMA with minimal additional water supply investment (Table SM1). 
Within the SWAP products, we refer to these scenarios as “Future without SGMA,” (or “No-SGMA” for 
short), “Low Impact SGMA,” and “High Impact SGMA,” respectively. After feedback from stakeholders, we 
decided to focus on the “High Impact” scenario as most salient of the two with-SGMA scenarios, as well 
as to reduce the combinatorial expansion of scenarios considered when presenting the main results. The 
“High Impact” scenario is the “BAU” or “BAU SGMA” scenario referred to in the main manuscript.  (Even 2

the high impact scenario shows more modest impacts to ag than existing studies.) 

The first three rows of Table SM1 are constant across scenarios. Historical hydrology refers to the 
sequence of years used to represent variability in water supply by region. Climate conditions refer to 
changes in future water supply deliveries under climate change. A constant 2030 climate is applied to all 
scenarios over the same historical hydrology. SGMA is implemented as region-specific constraints that 
limit groundwater pumping to be no greater than the sustainable yield in each subbasin. The sustainable 
yield target is implemented by limiting total regional groundwater pumping based on an approximate 
percent difference in pumping above or below the sustainable yield, by hydrologic year type, such that the 
average annual safe yield is met over the representative set of hydrologic conditions. In addition, regional 
water supplies are augmented based on development of additional storage and investment in new, local 
infrastructure. The “Water Supply and Use” row summarizes these factors for each scenario.  

Table SM1 -- Key scenario elements for the SWAP modeling.  

  No SGMA 

(Base at 2040) 

High-impact  (BAU) SGMA 
(at 2040) 

Low-impact SGMA 
(at 2040) 

Climate conditions 2030 2030 2030 

Historical hydrology  3 1974 – 1994 1974 – 1994 1974 – 1994 

2 Certain intermediate products retain the original scenario label of “BASE” for “No-SGMA” -- this is not 
the same as “BAU” in the main manuscript, where BAU refers to what we consider the most likely, in 
contrast to a habitat-aware strategic coordination approach.  
3 ​Note that actual water supply estimates from the historical period are used for calibration, but for the 
future condition scenarios, modeled results for water years 1974-94 incorporate 2030 climate conditions 
as developed for the Technical Reference for the California Water Commission’s Water Storage 
Investment Program.  
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Market conditions Shifting consumer 
demand; endogenous 
prices; dairy market 
contraction 

Shifting consumer demand; 
endogenous prices; dairy 
market contraction 

Shifting consumer demand; 
endogenous prices; dairy 
market contraction 

SGMA No SGMA Phased SGMA 
implementation to 2040; 
steady-state 
implementation at 2040 

Phased SGMA 
implementation to 2040; 
steady-state implementation 
at 2040 

Water Supply and Use No additional storage Additional water available 
for recharge based on 
existing infrastructure 

Sites reservoir + CA “Water 
Fix + investment in 
additional recharge. 
Additional flexibility in farm 
practices to adjust irrigation. 

 

SWAP primary and derived outputs 

Average annual cultivation statistics 
For each scenario and region, SWAP generates annual cropping statistics for eighteen different crops 
over a simulated 21 year period of representative hydrology (with water availability -- but not agronomic 
response -- adjusted for climate change). The model provides outputs that include region-specific 
estimates by year, which were then summarized into annual averages including gross revenue, net 
revenue, applied water, and consumptive water, for each of 18 crop categories, for each region, and for 
each of the three scenarios mentioned above. Our modeling of land use change aggregates crops to 
annuals and perennials, but when doing so it tracks the associated statistics based on area-weighted 
contributions of the finer-scale classification within each scenario and region. For example, the per-area 
returns to perennials in Region 1 versus Region 9 will reflect the fact that there is a different portion of 
almonds versus grapevines in the two regions.  

Estimating permanent retirement by SWAP region 
A decrease in average annual cultivation may arise from a mix of reduced cropping intensity on cultivated 
land and from permanent retirement of land currently in agriculture. This distinction is of interest because 
the two land types are associated with different opportunity costs when assessing whether to bring 
parcels into alternate land use (viz. restoration). In order to estimate a partition between these two 
sources of reduction, we calculated a change in region-specific ​maximum cultivated area​ within each of 
the SWAP scenarios, based on an average of the three highest-cultivation years in each scenario 
(typically, but not necessarily, corresponding to the wettest years). The difference in these maximums 
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across the with-SGMA and no-SGMA futures represents an estimate of permanent retirement attributable 
to SGMA, while the difference between average annual cultivation and the physical footprint of ag 
represents an estimate of average temporary fallowing, with some nuances discussed further below.  4

Because there may be substitution between crops within the 21 year period analyzed and permanent 
retirement is not specific to a type of crop, these results are only provided at the region level for the two 
SGMA scenarios, relative to the no-SGMA scenario. 

Consideration of uncertainty in SWAP 
While we explore many scenarios and parametric uncertainties in the broad workflow of this paper 
(described below), we acknowledge these are essentially all conditional on the regional-level SGMA 
impacts as modeled by the difference between two focal SWAP scenarios. It would of course be desirable 
to undertake additional exploration of the SWAP assumptions and inputs, though we do not believe they 
would fundamentally change the results in surprising ways. First, our preliminary explorations of the 
resulting conservation portfolios under “low-impact SGMA” were relatively similar. Second, as mentioned 
earlier, the “High Impact/BAU” scenario is regarded by some in the SJV space as a low level of fallowing 
compared to some other estimates. To the extent this is correct and overall fallowing will be higher, this 
lowers the opportunity cost associated with restoration and essentially gives more scope to prioritize 
based on conservation. Furthermore, from a practical standpoint, improved fallowing estimates are likely 
to emerge in the coming few years as GSAs establish water budgets and sustainability plans, as well as 
positions on water trading that will fairly dramatically affect required fallowing levels. Nevertheless, we are 
currently beginning follow-on work to conduct a more in-depth sensitivity analysis of the feedbacks 
between the land use change modeling steps and the resulting conservation portfolios.  

Modeling land use change to translate regional SWAP model 
output to the pixel level 
SWAP outputs are provided for 10 regions within the SJV and so provide some coarse indication of the 
spatial variability of SGMA impacts. However, because habitat is fundamentally spatial with variation on a 
much finer scale, our workflow requires translating the available SWAP output into plausible patterns of 
retirement and cropping intensity on a scale that aligns with spatial variation in habitat. For this analysis, 
we use a 1080m pixel, though as described below we track fractional land use below the pixel level. We 
create these landscapes by implementing a rule-based algorithm that uses spatially varying agricultural 
suitability layers to modify the existing landscape to match region-level statistics from SWAP. Given 
numerous uncertainties governing land use dynamics, we develop a suite of ​plausible​ pixel-level spatial 
patterns of cropping in a future landscape, rather than focus on estimating a most-likely scenario. We first 
describe the rules represented, and then the spatially varying drivers.  

Rule-based approach to generate BAU landscapes 
Our rule based approach is implemented to capture the following qualitative dynamics: 
 

4 Terminology in SWAP products refers to the difference in average annual cultivation between 
with-SGMA and without-SGMA futures as “temporary fallowing” but we apply a separate definition more 
focused on physical land use, explained in the next section.  
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● Switching crop categories is costly. Therefore, all else equal, area dedicated to a crop category 
(ie, annual or perennial) that remains in production should be assigned first to places where it 
was already being grown in our base year landcover map.  

● Suitability by definition means that, within a crop category whose area is being ​decreased​, less 
suitable land will go out of production before higher suitable land.  

● Suitability also means that, within a crop category seeing an ​increase​ in planted area, higher 
suitability land will be brought in first.  

● Perennials have priority over annuals due to their higher returns.   5

 
These rules together define a fairly straightforward mechanistic algorithm, expressed here at a high level, 
and applied within each SWAP region: 
 

1. Land cover stack: ​Starting with a base year land cover map, reclassify all land in the base year 
to one of four categories: perennial agriculture, intermittently cultivated annual agriculture, 
natural, or excluded. Intermittently cultivated annual land includes land identified as idled, and is 
ultimately associated with a region-specific cropping intensity, which could be greater or less than 
one.  To ensure greater accuracy and avoid pixelization error, the area of each land class within 6

each pixel is tracked (based on the finer scale 30m land cover), rather than assuming an entire 
pixel is of one particular class. The limits of the present-day agricultural footprint are taken as the 
limits of no-SGMA future, corresponding to an assumption of negligible expansion of footprint 
between now and full SGMA implementation, and also negligible permanent retirement in a 
no-SGMA future.  

2. Permanent retirement:​ For a with-SGMA scenario, the SWAP analysis provides an estimated 
area to be permanently retired. To assign this to specific pixels on the landscape, agricultural land 
on pixels with the lowest values for the agricultural suitability index is decreased to zero on 
incremental pixels, until the region-specific permanent retirement value has been met. For most 
pixels being retired, this will involve retiring all annual and perennial cropland within the pixel. 
Except in cases of very rare numerical coincidence, each region will also have one “remainder” 
pixel that gets partially retired. In these cases, annual area is reduced first, and then if additional 
retirement is still necessary within the pixel, perennial area is further reduced.  

3. Perennial expansion or contraction:​ The area assigned to perennials is expanded or 
contracted relative to the base year, so that the footprint in the scenario map matches the 
average annual outputs from SWAP for perennials. (This effectively assumes that the footprint of 
perennials is in a 1:1 ratio with the average annual values -- i.e., that planted area is in a steady 

5 There are two different factors involved in this assumption: One is that spatially varying factors affecting 
suitability are the same for annuals as for perennials. The other is that, even if they are very similar in 
their definitions of suitability, perennials will take priority -- which seems generally plausible due to their 
higher returns, though there are anecdotes where that is not the case, due to value chain considerations 
and local processing infrastructure. 
6 Our 30m base year landcover to which the above reclassifications are applied is included in the data 
upload. It is an augmented version of LandIQ/DWR 
(​https://databasin.org/datasets/6cc5b24e401043a899a6db6eef5c86db​), augmented with sources such as 
CalFire’s FVeg (​https://map.dfg.ca.gov/metadata/ds1327.html​), OpenStreetMap for roads and rail, and 
NASS Cropland Data Layers (CDL) from 2014, 2016, 2018 to handle ties regarding some conflicting or 
incomplete land uses. We use LandIQ as the base layer because it is generally regarded as of greater 
thematic accuracy than CDL. Landcover crosswalks are listed in the included file “lulc crosswalk 
master.xlsx”  

6 

https://databasin.org/datasets/6cc5b24e401043a899a6db6eef5c86db
https://map.dfg.ca.gov/metadata/ds1327.html


state after SGMA implementation, and trees are not being taken into or out of production each 
year, as that is agronomically not possible.)  

a. When perennials expand, they are assumed to expand on the highest quality ag land that 
is not under already under perennials and was not permanently retired in Step 2 -- in 
effect displacing land that would be under intermittent cultivation of annuals (but note that 
this a statement about ​long-run land use​, not planted area -- i.e., expansion or 
contraction of perennials does not imply change in average annual production of annuals, 
just the extent of the footprint on which it occurs, as described in Step 4). 

b. When perennials contract, they are assumed to contract from the lowest valued pixels on 
which they are grown, in essence “freeing up” that land for intermittent cultivation.  

4. Annuals are assumed to be intermittently cultivated​ over the remaining (unretired) agricultural 
land within the region, with their average intensity of cultivation determined based on the SWAP 
average annual production within the region, divided by the footprint available for cultivation of 
annuals.  

5. To create maps that describe the (revenue or water use ) ​impact of retiring agricultural land​ on 7

a given parcel, we apply the following assumptions: 
a. Land under perennials receives the per-area region-specific value from SWAP (weighted 

by area of the sub-categories of perennials). E.g., if SWAP output indicates that, on an 
area-weighted basis, perennials have a gross revenue of 2000 $/ha (per year), and the 
pixel in question contains 50 ha of land under perennials, the revenue layer is assigned a 
revenue value of 50 x 2000 = $100,000 for that pixel. 

b. Land under intermittent annuals receives the per-area region-specific value from SWAP 
(also weighted by area of the sub-categories of annuals), and scaled by the cropping 
intensity of annuals within the region. For example, if the region in question contains 
10,000 ha of land dedicated to annual crops, and the average annual production is 6,000 
ha, with a per-hectare return to planted area as $1000/ha, this implies that an average 
hectare of land under intermittent annuals would have a gross return of $600/ha. If a pixel 
contained 50 ha of land under intermittent annuals, it would be assigned a revenue value 
of 600 x 50 = $30,000. This corresponds to the assumption that all land in the footprint of 
intermittent cultivation is equally likely to be cultivated and that the cost of retiring that 
land us uniform within a region. 

c. Finally, since area within pixels are tracked separately for annual and perennial, the two 
are added together within the pixel.  
 

With the exception of the initial land cover reclassification, the code to implement this algorithm is in the 
file RB_downscaling.R 

Estimating temporary fallowing  
Temporary fallowing as reported in the main manuscript is interpreted as the average annual area of land 
within the (unretired) agricultural footprint that is ​not​ planted. SWAP is based on aggregate production 
statistics and does not take physical land use as an explicit input or output. Therefore, to estimate 
temporary fallowing as we define it, we apply conversion factors to translate ​average annual production 
statistics​ to ​physical net area planted​ in an average year. Corn is the dominant crop that sees multiple 
plantings per year, and so we apply the following conversion factors to the corn acreages within the 

7 Water use is not currently considered in the analysis presented in the paper but is mentioned because 
the code implements this as well, to preserve possibilities for future analysis.  
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SWAP outputs. These factors were developed from earlier DWR and county data estimates of 
double-cropped silage acreage​. 
 

Table SM2 -- Net cropping area correction factors.  
Correction factors applied to the corn category within SWAP outputs, to translate from average annual 
area planted to physical footprint.  

Region 

Silage correction factor to 
translate to net area planted 

1 60% 

2 60% 

3 63% 

4 60% 

5 63% 

6 42% 

7 43% 

8 43% 

9 54% 

10 63% 

 
Average annual temporary fallowing is then calculated as the gap between the total of (permanent 
retirement and average annual net area planted) and the area of the present-day agricultural footprint. Or, 
equivalently, the gap between future agricultural footprint, and future average annual net area planted. 
Mismatches between SWAP modeling assumptions and land use assumptions result in a small negative 
temporary fallowing in Tule (Region 8), which we report as zero for logical consistency (negative 
temporary fallowing does not have a meaning). This may be due to three sources of error: 1) 
Overestimate of total production statistics by SWAP-RTS, 2) Overestimate of net-area conversion factors 
for corn or other crops, 3) Underestimate of physical footprint in agricultural land.  

Additional considerations and assumptions 

1. Our approach does not take into account expansion of urban lands or other land use change 
(solar, etc), which are assumed static. Future work could incorporate expansion of other land 
uses as constraint layers on where restoration can be undertaken. This approach would not 
require fundamental changes to the workflow, but would still not incorporate feedbacks related to 
spatial variation in land scarcity and competing demands -- that would require fundamentally 
different modeling approaches to land use and opportunity cost.  

2. The connection between SWAP results and land use assumes the boundary of present-day 
agriculture is the boundary of agriculture in a no-SGMA future. While some areas may see small 
amounts of expansion, we expect that even in the absence of SGMA the variability of surface 
water availability under climate change, increased pumping costs, and environmental regulations 
would limit significant expansion relative to the present day. This assumption is generally most 
likely to be violated in the northern end of our study region, where we find minimal high quality 
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habitat for the target species -- so while it may affect land use projections, it is unlikely to 
significantly affect restoration targeting. 

3. We assume that existing natural land will remain natural, regardless of whether it is currently 
protected. While we account for existing protected lands in our analysis, this exercise is not 
explicitly about prioritizing threatened natural land, it is about identifying priority land currently in 
agriculture that can serve habitat goals at minimal cost to the ag community -- but within a 
broader landscape of existing natural and protected lands. The locations of the ag lands that are 
high priority for restoration may incidentally suggest unprotected natural lands that merit 
protection to ensure improved contiguity or support migration corridors, but formal consideration 
of those factors is beyond the scope of this analysis. 

4. Land under conservation easement is treated as both protected from development and, if it is 
agricultural land, is modeled as protected from retirement. As background, LULC maps indicate 
that existing protected areas (ie, those in some type of conservation) cover some land that has 
non-negligible amounts of ag in the present day. In addition to being treated as protected from 
development (the intuitive conception of “protected”), ​existing ag on existing protected land​ is 
treated as ​protected from ag retirement​ in the transition from the current landscape to a BAU 
future.  

Creating multiple plausible ag suitability layers 
The above algorithm relies on a spatially defined agricultural suitability index that is generally reflective of 
spatial variation in anticipated returns to agriculture, in an ordinal sense: That is, the lowest values 
represent the “worst” land that is therefore most likely to be permanently retired, and lower and higher 
values generally correspond to places where growers would prefer to avoid or expand, respectively. The 
cardinal values of the agricultural suitability index are ​not​ assumed to have meaning: E.g., an agricultural 
suitability index of .8 is not assumed to translate to 33% higher yields or profit than land with an 
agricultural suitability index of .6, or to 33% greater likelihood of being cultivated, etc. More sophisticated 
and data-intensive strategies for developing a suitability index could be utilized to speak to those 
interpretations, and in turn inform the cost surface as well, but that is beyond the scope of this study.  
 
To generate realizations of an ag suitability index, we consider linear combinations of spatially explicit 
factors like soil quality, salinization status, and security of access to water supply, based on the 
assumption that they are predictive of higher and lower ag suitability. By combining a broad set of factors 
that are reasoned to be relevant based on contextual knowledge (elaborated in the following section) and 
doing so using a range of weights, we generate a range of plausible agricultural suitability patterns. 
 
Specifically, we generate multiple agricultural suitability layers by combining different weight combinations 
on a set of spatially explicit factors (below), with the final ag suitability index value (AGSI) for a given layer 
taking the form of a normalized weighted index: 

GSI  β F β F  ... β F ;  A =  1 1 +  2 2 +  +  K K  ∑
 

k
βk = 1   

Where each​ F​k​ is a potential spatially explicit driving factor (hereafter “ag suitability factor”) such as those 
referred to above, but which have been normalized so that when a factor takes a value of 1 in a pixel this 
indicates it is the best possible value for agriculture, and when it takes a zero it is the worst possible 
value. Weights themselves also vary between zero and 1, so that setting a weight to 1 on any particular 
factor and zeros on the others equates to answering the question “what if that particular factor was the 
sole predictor of ag suitability?”  
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After exploration of a larger number of scenarios, we focused on four spanning scenarios and one evenly 
weighted scenario as shown in Table SM3.  

Table SM3 -- Weights for agricultural suitability factors.  
Spatially explicit suitability factors and weights determining different ag suitability layers (columns), with 
cells indicating the weights places on each factor, and the corresponding short-hand name associated 
with each weights combination.  
 

Driver layer →  
------------------- 
LUC Scenario 
Name ↓ 

Land Assets Land Impairment Groundwater Surface Water 

Even 1/4 1/4 1/4 1/4 

Land Assets 3/4 1/12 1/12 1/12 

Land Impairment 1/12 3/4 1/12 1/12 

Groundwater 1/12 1/12 3/4 1/12 

Surface Water 1/12 1/12 1/12 3/4 

 

Sources and development of agricultural suitability factors 
We draw our ag suitability factors from two sources: Some land quality and impairment indices provided 
by another study of the future agriculture in the SJV ​(3)​, and some custom-developed indicators of 
surface and groundwater security built by integrating publicly available water data. 

Land Assets and Land Impairment 
The American Farmland Trust and the Conservation Biology Institute (CBI) recently undertook a similar 
but distinct exercise as ours, to identify spatially varying drivers of high quality or high importance 
farmland for protection ​(3)​. While having a somewhat different orientation, this study ultimately assembled 
and combined various data layers designed to indicate spatial variation in factors relevant to ag suitability. 
It includes a Land Assets layer that relies on the California Storie Index, Farmland Mapping and 
Monitoring Program Rank, Aquifer Recharge Potential, and presence of Citrus Microclimates. It also 
includes a Land Impairment layer that integrates spatial data on saline soils, sodic soils, shallow 
groundwater tables (having potential for waterlogging), and land fallowed during the 2012-2017 drought. 
In each case the constituent layers were combined using CBI’s Environmental Evaluation Modeling 
System,  which integrates the layers using a tree-based fuzzy logic approach. For our analysis, we used 8

the two high level land asset and land impairment layers for the land-quality related drivers.  

8 ​https://consbio.org/products/tools/environmental-evaluation-modeling-system-eems 
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Custom factors for surface and groundwater risk 
We developed spatial indicators intended to capture where surface and groundwater supplies were likely 
to be more or less reliable and more or less constrained in a water-scarce future. In doing so, we 
considered historical predictors and factors that, when combined with the logic of SGMA implementation, 
may be predictive of greater or lower likelihood of cultivation or retirement. A key challenge in this regard 
is being aware of how historically valid predictors of ag suitability may change under future policy and 
climatic conditions. For example, under open access to groundwater, historical groundwater overdraft 
may be highly predictive of high value crops, but will actually be an indicator of lower water security in a 
future for those lying within Groundwater Sustainability Agencies (GSAs) where that groundwater 
overdraft is halted -- suggesting that statistical inference based on historical features may not be suitable.  

Surface water security index 

Our surface water security index is based on a combination of three factors:  
 

● Relative security of surface-water rights, as a ratio of ​estimated present-day water demand​ to a 
measure of ​secure water rights​; 

● Historical fallowing​ patterns as a proxy for insecure access to water during droughts. 
 
The index itself is calculated by combining the fallowing dataset and the ratio of applied to water to the 
estimate of secure water rights. 

(S/S )  w ((NF )/(NF ))V s = w1 max +  2 max   
with  

og ((R )/ (A 1))S = l + 1 +   
 
where: 

ratio of applied water to total pre-1914 water rights that supply itS =  
maximum value of S within each regionSmax =  

surface water vulnerability index, linearly scaled to range [0, 1]V s =  
total current water demand (applied water) in the GSA (acre-feet/yr)A =  
total claimed pre-1914 water rights for diversion points reported in eWRIMS for the GSA (acre-feet/yr)R =  

number of years fallowed [0, 5]FN =  
w​ indicates relative weights on the applied water versus fallowing factors. For these study they are taken 
as relative weights of ⅔ and ⅓.  
 
The constituent layers are described below: 
 
Surface water available as senior water rights by GSA (R) 
Senior water rights are an indication of the ability to secure water by individuals or irrigation district when 
surface water supplies are low. We rely on data from the electronic Water Rights Management System 
(eWRIMS) maintained by California’s State Water Resources Control Board to determine access to senior 
water rights at the GSA level.  eWRIMS is a public database providing basic information on water rights, 9

including locations of points of diversion (POD) associated with each water rights application, owner 
name, status, date, pre-1914 and riparian designation, diversion amount, and beneficial use (e.g., 

9 ​https://ciwqs.waterboards.ca.gov/ciwqs/ewrims/EWMenuPublic.jsp 
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hydropower, agriculture, domestic, industrial, recreation, and environmental). The database provides the 
diversion ​amount ​only for appropriative (post-1914) water rights, and provides only a diversion ​rate​ for 
pre-1914 and riparian rights. Importantly, none of the rights in this database directly account for available 
water supply in a given year, and surface water is generally recognized as being overallocated ​(4)​; 
nevertheless their variation in space should still provide some relative indication of greater and lesser 
water security, and this relative status is the only information we utilize in our algorithm.  
 
We use the annual water diversion rate assigned to pre-1914 surface water rights claimed for points of 
diversion located within each GSA as the basis for access to senior water rights, which informs the 
normalization. For example, if there are three GSAs within a subbasin, the GSA with the lowest surface 
water rights would receive a zero, the GSA with the highest senior water rights would receive a one, and 
the middle GSA would receive a value between zero and one based on where it’s pre-1914 diversion 
rights sit relative to the two extremes.  
 
Although water usage reports claiming pre-1914 rights that have been filed with the State Water Board 
are admittedly incomplete ​(4)​, these are currently the best data available on the availability of the most 
senior water rights in the system. While riparian rights are also senior, they are legally distinct from 
pre-1914 rights in that 1) they are not allowed to be transferred to other lands beyond the riparian 
property, and 2) they are only realized when there is water available to divert. In contrast with pre-1914 
water rights, therefore, we do not consider riparian rights as secure a source of water since they are more 
vulnerable to year-to-year fluctuations in river flow and diversions upstream. There is also regional 
variability in reliance on imported water and the security of imported water supply from the Central Valley 
Project, but we were unable to collect “wall-to-wall” data on this. Therefore it is omitted from the current 
analysis, but would be helpful to include in future work.  
 
Applied Water (A) 
DWR provides agricultural water use information by crop type per county , and the average applied water 10

by crop type and county was calculated over the years 1998-2005. These average values were mapped 
to the DWR/LandIQ land cover map (at 30m resolution). We then summed the pixel-level applied water 
values for all pixels within each GSA, resulting in a final applied water raster with units of acre-feet per 
year per GSA. Since 2014 was a drought year that was already demonstrating the effects of low surface 
water availability, we assigned idled land the weighted average applied value associated with annuals, 
rather than zero -- using zero would have lead to an “artificially” flat demand surface as if demand had 
already been curtailed.  
 
Number of years fallowed (NF) 
The number of years fallowed is derived from NASA Fallowed and Cropped land in the Central Valley: 
https://nex.nasa.gov/nex/resources/370/​.  
Working citation: Melton et al. 2017. Satellite Mapping of Fallowed Agricultural Lands during the California 
Drought. 
 
Data was provided directly by Melton for 2011 to 2016, with the caveat that 2012 data was notably less 
reliable,  so our analysis excludes that year. The layer developed does not distinguish non-ag land from 11

land that was never fallowed during that period. We therefore assign zeros to missing pixels that are 

10https://water.ca.gov/Programs/Water-Use-And-Efficiency/Land-And-Water-Use/Agricultural-Land-And-W
ater-Use-Estimates 
11 Melton, personal communication 2017-08-29 
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identified as ag land from our our LULC, resulting in a raster where each pixel corresponding to ag land in 
our LULC  is assigned a value between 0 and 5 representing the number of years that agricultural lands 
were not in production between 2011 and 2016, and excluding 2012.  
 

Groundwater security index  

We assume that restrictions on groundwater pumping under SGMA will have the greatest impact in 
places where the historical rates of groundwater decline are highest, and where there is greatest 
dependence on groundwater supplies to meet water demands. Therefore our groundwater security is 
based on just two factors: 
 

● Historical rate of groundwater decline. 
● Relative dependence on groundwater supply. 

 
Calculating the index of ground water security 
For each pixel, we calculate an index of overall groundwater vulnerability by scaling the rate of 
groundwater decline (D) by the dependence on groundwater supplies (P). The result is then normalized 
between 0 and 1 based on the minimum and maximum values of D taken over the SWAP regions:  
V (− )/(D )g =  DP  − Dmin max − Dmin   
where 

 groundwater vulnerability index, linearly scaled to range [0, 1]V g =  
rate of groundwater decline (ft yr​-1​)D =  
fraction of total water supply from groundwater [0, 1].P =  

 
These is then converted to an index of groundwater security (S​g​), by taking the additive inverse: 
 
Sg = 1 − V g  
 
 Detail on the two layers is below: 
 
Rate of groundwater decline (D) 
We characterize each GSA with the mean rate of decline in spring groundwater levels, based on 
CASGEM’s ​Groundwater Information Center  data on well levels at 1174 points in our study area, with 12

data collected from spring of 2002 through spring of 2017. All of the monitoring points have data spanning 
at least 10 years during this period, with some (212) having data that span 15 years. We calculated the 
rate of decline for each monitoring point, by taking the difference between the earliest and the latest 
available groundwater level data and dividing by the number of years in the record. We then calculated 
the mean rate of decline for each GSA and for each sub-basin, by averaging together the rates for all 
points within each GSA and each sub-basin. The mean rate of decline within each GSA is assigned to 
each pixel within that GSA; pixels within GSAs which have no data points within their boundary were 
assigned the mean rate of change for the sub-basin. This method is subject to some potential bias based 
on the location and density of wells, but we are unaware of a priori reasons such bias would exist, and 
consider it reasonable to assume that such bias will be offset by our consideration of alternative weights 
and, we later intend to explore alternative sources for groundwater risk. Spatial resolution of groundwater 

12 ​http://water.ca.gov/groundwater/gwinfo/  
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decline could be refined in future work by connecting to groundwater models and GSA-specific deficits 
that will become more clear as groundwater sustainability plans are finalized. 
 
Dependence on groundwater supplies (P) 
We used data on the percentage of total water supply provided by groundwater for each subbasin, 
provided by CASGEM’s Basin Prioritization study ​(5)​. We assign this value, expressed as a fraction 
between 0 and 1, to each pixel within the subbasin.  
 
Conversion of base files into normalized suitability layers is implemented with comments in the file 
ag_suit_preprocessing.R, including documentation of adjustments and imputations for missing data and 
border effects.  

Additional considerations 
Depending on GSA governance choices and infrastructure development over the period of SGMA 
implementation, surface water reliability and groundwater vulnerability may be relevant to the GSA or 
subbasin mostly in aggregate, or they may remain very independent concepts that drive spatial 
differentiation. For example, if GSA’s have good surface water conveyance throughout the GSA and 
choose to facilitate intra-GSA trading and also credit “in-lieu” recharge to allow trading between surface 
water use and groundwater pumping, the overall risk within the GSA is more homogenous, reflecting 
average surface and groundwater conditions. If access to surface conveyance is very heterogeneous 
within a GSA, and the GSA members also choose to keep groundwater and surface water management 
fairly separate, then differences in the reliability of access to surface and groundwater within the GSA 
could drive spatial cropping patterns to a greater extent than is reflected in our analysis. In our case, the 
only water-risk variation we consider below the GSA level is pixel-level fallowing, which in reality is likely 
to reflect a combination of water access and land characteristics, and has some slight covariation with the 
Land Impairment layer, since fallowing factors into that layer as well. 

Spatial Optimization 
We utilize the minimum set objective framing  in ​prioritizr​, using a zones framework to differentiate 13

between restoring uncultivated land and active retirement and restoration. Existing natural land is taken 
as a “locked-in” form of “restore uncultivated”.  The step by step specifications are detailed in thoroughly 14

commented file “optim_batching.R”. Here we review the high-level assumptions embedded in the 
optimization:  

1. There is a threshold for the fraction of a pixel that is identified as natural land that must be met or 
exceeded for that pixel to be counted as pre-existing “natural” by the optimizer (and therefore 
worth trying to cluster next to through the application of a boundary penalty). That threshold by 
default is 75%, but is explored in the parametric sensitivity analysis.  

2. To be eligible for restoration (whether active or of BAU-retired land), a pixel must have sufficient 
restorable land such that after restoration, it would be above the threshold for being considered 
natural. Ie, existing natural + [potential] restored must be bigger than whatever threshold one has 
set for natural. Eg, if the natural threshold was 75%, and a pixel was 40% natural, then a pixel 
with another 40% ag would be eligible for restoration (because after restoration, the pixel would 

13 ​https://prioritizr.net/reference/add_min_set_objective.html 
14 ​https://prioritizr.net/reference/add_locked_in_constraints.html 
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be 80% natural), while a pixel that was only 20% ag would not (because after restoration it would 
only be 60% natural, which is still below the 75% threshold). 

3. However, if restoration action is taken in a pixel, the assumption is that all restorable land within 
the pixel is restored, not just up to the 75% threshold. This is a proxy for feasibility, transaction 
costs, and the like.  

4. A pixel that exceeds the natural threshold to begin with is not eligible for additional restoration – 
this is also a proxy for engagement/transaction costs: While it might be worth it to move 
something from 76% natural to 95% natural all else equal, actors would rather focus on areas that 
are going to get larger gains. At a threshold of 75% natural, it is likely that there is already a good 
deal of contiguity of natural land within the pixel so it will probably be able to provide connectivity 
to the surrounding pixels, and is therefore sufficiently natural to form part of an augmented 
reserve.  

5. To encourage clustering, the optimizer rewards reducing the boundary length around land that 
meets at least one of the following criteria: 

i. Is classified as existing natural 
ii. Is classified as existing protected, regardless of what fraction of the pixel is 

actually “natural” according to an LULC. 
iii. Is selected for active retirement and restoration 
iv. Is selected for restoration of BAU-retired land. 

6. Restoration (whether of BAU-retired or active retired) is limited to land that is high quality habitat 
for at least one of the five target species. This is not the case for existing natural land or for 
existing protected land, which are assumed to be “locked in”. This assumption essentially splits 
the difference between an approach where clustering is valued on all natural/restored land (even 
if it’s not high quality habitat for a target species), and one that only values clustering on high 
quality habitat. Instead, it enforces the notion that “making clusters of natural land is valuable, but 
only if done so by augmenting with high quality habitat.” 

7. The cost of actively retiring and restoring (“retire and restore”/”RR”) ag land is the gross-revenue 
associated with that land class in that region. Each region has a different value for the cost of 
retiring perennials [based on the SWAP cropping mix of perennials in that region], or for 
intermittently cultivated annuals [based on the SWAP cropping mix of annuals, as well as the total 
average annual cultivation relative to total area of available for annuals – ie, the cropping 
intensity]. 

8. The cost of restoring BAU-retired land (“Restore Uncultivated”/”RU”) is specified relative to the 
costs of the lowest-return ag lands -- that is, we want it to be less than the cost of retiring any land 
that is under cultivation. At the same time, since taking that land out of the “option space” for ag 
has an impact to the SJV economy beyond just the boundary of the SWAP region where the pixel 
is, the spatial variation in the costs to the ag economy should perhaps not be quite as stark, and 
could be balanced by a measure of the basin-wide opportunity cost of land. We represent this 
dynamic as a weighted combination of the lowest return to cultivated land within each region, and 
the basin-wide average return to intermittently cultivated annuals – this weighted combination is 
then scaled down by some fraction (​costfrac​, in eq below) representing the opportunity cost to ag 
of taking that land out of the “option-space” even after it was permanently retired. That default 
fraction is 10%.  

ostf rac [basinwt ve per ha returns to ICA in SJV  (1 asinwt) min per ha returns in region]  c * a +  − b *    
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For narrative simplicity, the main scenarios presented in the paper assume zero weight on the 
basin-wide averages, after confirming that the qualitative conclusions were robust to an 
even-weighting. 

9. Costs are only used to determine relative costs in space, and relative to a boundary penalty – i.e., 
gross revenue is only a proxy for ag impact. Not only is gross revenue a coarse proxy for 
long-term opportunity cost, we also know that farmers, GSAs, and conservation actors might work 
to shift some cultivation in space rather than scale down total cultivation in direct proportion to 
land that is retired and restored (and indeed, the point of strategic engagement is to help bring 
about these shifts). Such shifting or changing of cropping intensity will have a cost, but not the 
same as actually retiring the land. For example, if there are 10 (equally sized) parcels, and on 
average six are cultivated in any one year, then the average return on one parcel (and the 
average assumed cost of retirement) is 6/10 x [the return on continuous cultivation of one parcel]. 
If the optimizer/conservation actors identify two of those parcels that are high priority for 
restoration, the optimizer will model the loss as 2 * [6/10 * return on continuous cultivation of on 
parcel of land]. In reality, the remaining eight parcels may be farmed more intensely as a result of 
restoration on the target pixels, which would significantly (but not 100%) offset the loss from 
taking those two parcels out of production. These subtleties are ​not​ represented in our 
optimization, but are given context by the land use statistics in our bar plots. 

10. This analysis assumes that ag land can be fully restored to the same habitat quality level as 
natural land, and that the time required to bring about this equivalent habitat quality is irrelevant, 
so that restoring land gets full “credit” towards being high quality habitat regardless of the land’s 
history in agriculture, or other aspects of land condition – the assumption is all of those factors 
are built into the species distribution model. 

11. Relatedly, the cost of physical act of restoring, and to the extent necessary, managing, restored 
land is not taken into account. The focus is on cost as perceived by the ag community in terms of 
loss of production or option value.  

12. We assume restoration itself has no impact on water use, compared to land that is simply retired 
– in reality it may require a initial irrigation or other inputs to establish restoration vegetation, and 
have a potentially different ET profile than abandoned land, but the assumption is that this is 
negligibly ​different​ from retired land. 

Note to facilitate interpretation of code  
In earlier project stages, we also explored alternate problem forms. In one alternate, the optimizer could 
also select additional lands for retirement to secure water for chronically under-delivered water-dependent 
wildlife refuges in the SJV. This formulation spatializes the water saved from retiring a given pixel in the 
same manner as revenue is spatialized for the primary problem structure, with the additional option that 
retired lands can either be restored (the main problem specification), or retired to redirect water and with 
end use of the land left unspecified. We also explored a specification that would allow reconfiguring the 
landscape with recommendations about where ag in high value habitat areas could be shifted at least 
cost. We do not consider either of these actionable or relevant problem structures at this point due to a 
combination of higher requirements for data and model fidelity, and nuanced issues of implementation 
feasibility. They are mentioned here because structures to facilitate that analysis are retained in the code, 
with values zeroed out where relevant to ensure a problem structure that is equivalent to the simpler 
structure described in the main manuscript.  
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Excess nitrogen assessment 
We approach the co-benefit of reducing excess nitrogen in the landscape by calculating two metrics: (1) 
the change in nitrogen inputs to the system due to altered land use (tonnes/region; with the dominant 
effect stemming from retirement), and (2) mean historical NO​3​-N concentrations in domestic and public 
water supply wells, as a contextual proxy for potential impacts on populations in the affected area. 

Excess nitrogen application 
First, we estimate the excess nitrogen applied across No-SGMA, BAU-SGMA, and optimized scenarios. 
We calculate excess nitrogen based on fertilizer application rates from published studies ​(6–10)​ and 
alternate sources such as COMET-Planner documentation  and USDA’s Agricultural Chemical Usage 15

statistics for 2015 (Table SM4).  We also estimated nitrogen use efficiencies by crop type from ​(7, 16

10–18)​. We aggregated values to coarser categories but weighted by region-specific SWAP cultivated 
areas -- thereby reflecting regional differences in crop mixes. We assume that the difference between 
applied nitrogen and harvested nitrogen (calculated based on nitrogen use efficiencies) represents the 
“excess” nitrogen that holds potential to threaten human health via atmospheric or water-borne pathways. 
By differencing across scenarios, we can then also develop a metric for “excess nitrogen avoided.” More 
detailed treatment of nitrogen fate and transport is complicated by the fact that there is a high degree of 
spatiotemporal heterogeneity in soil N cycling ​(10)​, the treatment of which is outside the scope of this 
study.  
 
Nitrogen application rates were originally developed for the set of crop classes defined in the 
DWR/LandIQ land cover map, and later mapped to their equivalent SWAP crop category. In some cases, 
the mapping from DWR to SWAP was direct (as for cotton), in other cases, several DWR classes were 
combined into a single SWAP class (such as OTHDEC.) Where multiple DWR classes were combined, 
final SWAP values were calculated as an area-weighted average of the N application rates for all DWR 
classes included in the equivalent SWAP category.  
 

Table SM4 -- Sources for nitrogen application rates by crop category. 

SWAP Crop 
Category 

Weighted DWR classes included Nitrogen application  
source 

ALFAL Alfalfa; Miscellaneous grasses Swan et al 2015 

ALPIS Almonds; Pistachios Tomich et al 2016 

CORN Corn, Sorghum and Sudan Tomich et al 2016 

COTTN Cotton Tomich et al 2016 

CUCUR Melons, Squash and Cucumbers Tomich et al 2016 

15 ​http://comet-planner.nrel.colostate.edu/COMET-Planner_Report_Final.pdf 
16 ​https://quickstats.nass.usda.gov/ 
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DRYBN Beans (Dry) Tomich et al 2016 

GRAIN Wheat Tomich et al 2016 

ONGAR Onions and Garlic Tomich et al 2016 

OTHDEC Apples; Cherries; 
Peaches/Nectarines; Pears; 
Plums, Prunes and Apricots; 
Walnuts 

USDA NASS, Tomich et al 
2016 

OTHFLD Miscellaneous Field Crops; 
Miscellaneous Grain and Hay; 
Sunflowers 

USDA COMET 

OTHTRK Bush Berries; Carrots; Cole 
Crops; Lettuce/Leafy Greens; 
Peppers; Strawberries 

Tomich et al 2016, Perry et 
al., 2002 

PASTR Mixed Pasture USDA COMET 

POTATO Potatoes and Sweet Potatoes Tomich et al 2016 

PRTOM Tomatoes Tomich et al 2016 

RICE Rice Tomich et al 2016 

SAFLR Safflower Munier et al., 2011 

SUBTRP Avocados; Citrus; Kiwis; Olives; 
Pomegranates 

USDA NASS, Tomich et al 
2016, Ayars and Phene, 2011 

VINE Grapes Tomich et al 2016 

 
 
 

Table SM5 -- Excess nitrogen applied by crop category.  
The values are stored in the repository file “nitrogen_with_SWAP_crop_mapping_sheetonly.csv”. 

SWAP Crop 
Category 

Excess N applied 
(kg/ha) 

ALFAL 2.3 

ALPIS 151.6 

CORN 158.2 
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COTTN 132.4 

CUCUR 111.8 

DRYBN 63.8 

GRAIN 164.7 

ONGAR 165.0 

OTHDEC 102.1 

OTHFLD 69.8 

OTHTRK 180.0 

PASTR 69.6 

POTATO 144.0 

PRTOM 143.7 

RICE 95.2 

SAFLR 69.8 

SUBTRP 37.1 

VINE 32.0 

 
 
 

Vulnerability to excess nitrogen 
Vulnerability to excess nitrogen is determined relative to groundwater supplies, with a focus on drinking 
water supplies. Vulnerability of drinking water supplies to nitrogen contamination is based on historical 
NO​3​-N measurements in monitored domestic and public water supply wells. We obtained well locations 
and monitoring data from the California Water Board’s Groundwater Information System (GAMA). The 
data are available from 2000 to 2018, but the wells monitored are not consistent from year to year, 
making trends for individual well locations or sub-basins challenging to reliably characterize. Therefore, 
for each subbasin, we took the mean of NO​3​-N for all data points (representing all measured domestic 
and public water supply wells in the sub-basin) and across all years. This is of course an approximation 
that will obfuscate time trends and sub-regional variation, but we determined that the combination of data 
quality and complexity of fate and transport meant that a finer-scale analysis was not feasible. For 
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context, the maximum contaminant level (MCL) for NO​3​-N is 10 mg/L (California Code of Regulations 22 
CCR §63341).   17

 
The two subbasins corresponding to Region 10 of our SWAP analysis (Pleasant Valley and Kettleman 
Plain) did not have well records available through the GAMA system, so their results are not included in 
the overlays of excess nitrogen and vulnerability. These are contiguous subbasins that are outside the 
valley floor, and small in size and population. Additionally, where regions represented combinations of 
multiple subbasins, the region was assigned the simple arithmetic mean taken over the subbasins within 
the region.  
 
When interpreting these results, it should be noted that even in areas where nitrate contamination is not 
yet a concern, nitrate levels in groundwater may continue to rise after N application is reduced, due to the 
fact that travel times from sources of nitrogen to water supply wells can vary from years to decades, and 
even to centuries for the deepest production wells ​(19)​. Reductions in excess nitrogen applied may not 
result in immediate reductions in observed nitrate levels in drinking water, and the social benefit of those 
reductions may not be directly proportional to the current severity of the problem. It is possible reductions 
in nitrate loadings to drinking water sources may be most valuable in places where current concentrations 
are close to, but not yet exceeding critical levels, whereas reductions in areas already exceeding critical 
levels, and where investments in treatment systems have already been made, may be less valuable. 
 
The approach and data used for connecting changes in fertilizer application rates to beneficiary relevant 
outcomes represents one combination among several explored. We also considered drawing on other 
indicators of groundwater vulnerability to N contamination, such as DWR data on the number and density 
of wells (California Water Boards), USGS data on probabilities of nitrate contamination ​(20)​, and 
CalEnviroScreen ​(21)​. In general, the alternate approaches were deemed infeasible due inadequate 
information on end use (e.g. domestic use vs industrial, agricultural, etc.), being too dated, or problematic 
spatial correspondence. Future work may capitalize on the more resource intensive approach taken by 
Honeycutt et al ​(22)​. 
 

Table SM6 -- Estimated nitrate concentrations by SWAP region.  
The values are stored in the repository file “nitrate_conc_by_region.csv”.  

SWAP 
region 

Estimated nitrate 
concentration (mg/L) 

1 5.35 

2 7.14 

3 4.50 

4 6.61 

17 Stored values in the raster were originally normalized by the nitrate concentration to create an index. 
Therefore mg/L values are recoverable by multiplying by 10.  
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5 1.99 

6 3.55 

7 9.18 

8 5.69 

9 5.11 

10 NA 

 

Carbon flux assessment  

LUCAS modeling 
The land use and carbon scenario simulator (LUCAS) is an empirical model of land use change coupled 
with a gain–loss model of ecosystem carbon dynamics ​(23)​. We used a LUCAS model formulation that 
was designed to project changes in ecosystem carbon balance for the state of California under a range of 
climate and land-use scenarios on an annual timestep ​(24)​. Land use transitions and carbon dynamics 
were as described in ​(24)​, with the following modifications specific to this study: 
 

1. Rather than using the entire statewide California LUCAS model, we ran a simplified version on a 
single 1-km grid cell including state classes and carbon dynamics specific to the California 
Central Valley Ecoregion, using only transitions relevant to the SJV (for example, we did not 
include the effects of wildfire or drought induced tree mortality). This simplified model also did not 
incorporate the various climate change scenarios described in ​(24)​, and so did not address the 
long-term impact of climate change on plant productivity, organic matter decomposition, and 
heterotrophic respiration.  

2. In addition, we modified parameters associated with some of the land use transitions. Specifically: 
a. We added a “Fallow Plowing” transition, which occurred every year in the “Retired 

Unrestored” classification and three out of five years in the “Intermittent annuals” 
classification (see below). Fallow plowing represented a soil disturbance and resulted in a 
flux of soil carbon directly to the atmosphere in the amount of 10% of the total soil organic 
carbon pool, the same soil disturbance specified in the agricultural expansion transition 
type ​(24)​.  

b. Grasslands restored from agricultural land were assumed to consist of native perennial 
grasses, rather than the non-native annual grasses in the “Grassland” state class of the 
original California LUCAS model ​(24)​. We therefore modified restored grassland carbon 
dynamics so that 48% of live biomass carbon was transferred to the litter pool on an 
annual basis rather than 100% live biomass turnover.  

c. Sleeter et al assume specific initial soil carbon values as a function of land use history, 
ranging from 45.3 tC/ha for perennial (orchard & vineyard) cropland and 96.5 tC/ha for 
annual cropland. These are approximations, and applying this assumption without 
modification in our setting would confound the impact of initial soil carbon and transition 
type. We therefore chose to run scenarios with uniform initial soil carbon at high and low 
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values that encompass those used in Ref ​(24)​ (40 and 100 tons/ha respectively), and 
assess the sensitivity of the narrative to those assumptions. This approach recognizes 
that in an evolving landscape, the initial land use class for any particular snapshot in time 
may not be a strong predictor of the soil carbon and that the reality will be a mix of values 
within our sample extremes.  

 
The default parameters for the LUCAS model are previously archived,  and the parameter files capturing 18

modifications for this study are included.  

Transition Scenarios 
We simulated sixteen transition scenarios representing combinations of three starting classes of 
agriculture and five end-states, including restoration under two different vegetation types.  

1) Continuous annuals (no change) 
2) Intermittent annuals (no change) 
3) Continuous perennials (no change) 
4) Continuous annuals → Perennials 
5) Continuous annuals → RetiredUnrestored 
6) Continuous annuals → Grassland 
7) Continuous annuals → Shrubland 
8) Intermittent annuals → Perennials 
9) Intermittent annuals → RetiredUnrestored 
10) Intermittent annuals → Grassland 
11) Intermittent annuals → Shrubland 
12) Perennials → Continuous annuals 
13) Perennials → Intermittent annuals 
14) Perennials → RetiredUnrestored 
15) Perennials → Grassland 
16) Perennials → Shrubland 

 
Model scenarios that include a transition were simulated under the original land cover for 50 years, 
experience a transition in the 51st modeled year, and then are run for an additional 149 years. Transitions 
to retirement are modeled in two ways: One with discing and one without, and all transitions are modeled 
with two different starting soil carbon values.  
 

LUCAS output transformation and accounting 
Each simulation of a land cover trajectory produces a time series of soil carbon stocks​ S​, from which 
year-specific fluxes ​F​ can be derived, and indexed relative to a transition year 0.   19

 
 S ;  t − 9, ..., 150}F  
t

 
 =  t − St−1  ∈ { 4    

 

18 ​https://www.sciencebase.gov/catalog/item/5cd08011e4b09b8c0b79a3dd  
19 STSIM output that is processed in our analysis uses the years 2000 to 2200 as year indices, but these 
are essentially arbitrary remnants of simulations within larger projects and do not have meaning in our 
context.  
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The net impact (net flux ​NF​) that a transition (per unit area) has in a given year is identified by subtracting 
the flux value for the un-transitioned landscape (represented by ​a​) from the transitioned landscape 
(represented by ​b​).  
 
    NF t

a,b  
 = F t

b − F t
a  

 
For carbon accounting, our main results use a time horizon of 80 years, corresponding to transitions 
beginning in 2021 and considering impacts to 2100. However, not all land is assumed to transition in 
2020, but is rather staggered over time, discussed next.  

Accounting for transitions over time  20

If all land undergoing a specific transition did so in year zero, the GHG impact of the transition would just 
be the sum of net impacts from the initial time to the time horizon T (as mentioned above, our default time 
horizon is 80 years):  
 

 ∑
T

t=0
NF t

a,b  
  

 
However, if some land transitions later, the expression becomes more complicated, and we must also 
truncate to account for the time horizon. For a unit of land converted each year over twenty years from 
2021 to 2040, the contributions are staggered by year, and the total annual contribution is the sum of 
columns in the table below. If we assume an even distribution of transitions over the 20 year 
implementation period, then the average per-area effect of a transition in a given year will be those 
column totals divided by the length of the implementation period.  
 

  Calendar year →  
Transition year ↓ 

2021  2022 2023 2024 ... 2100 

2021 NF 0
a,b  NF 1

a,b  NF 2
a,b  NF 3

a,b  ...  NF 79
a,b  

2022  NF 0
a,b  NF 1

a,b  NF 2
a,b  ... NF 78

a,b  

2023   NF 0
a,b  NF 1

a,b  ...  NF 78
a,b  

...    ... ... ... 

2040     ... NF 60
a,b  

 
The above expressions can be used to create a multiplier table to translate the area associated with each 
conversion in an SLRR scenario. That is, for a given scenario, we take the acreage associated with a 
particular transition and multiply it by the aggregated values to estimate total GHG impact within a specific 

20 A small extension of the code allows one to apply a time-invariant social cost of carbon for 
benchmarking purposes, though we do not include these results in the manuscript. Under the simplifying 
assumption of a constant social cost of carbon, we can multiply the above values by the SCC and adjust 
for discounting to estimate a present value associated with the difference in emissions. More refined 
estimates could allow for an SCC that depends on the calendar year of emission. 
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accounting time horizon and land transition timeline. It can also be used to provide a multiplier for 
monetary impact given a particular discount rate and SCC trajectory. This created in the file 
carbon_staggering.R 

Propagating unit impacts to landscape changes 
Our analysis of carbon impacts focuses on the difference between a BAU future with SGMA and a future 
with SGMA implemented with retirement and restoration. This illuminates the specific value of strategic 
restoration approach, and also reduces the role of tenuous assumptions associated with the evolution of 
the landscape in other dimensions. Therefore, we estimate transitions between the present day and future 
landscapes, but then focus on their ​difference​, so that any error in parts of the landscape unaffected by 
restoration is netted out.  
 
For simplicity and due to lack of readily available data, we assume the present day landscape 
experiences the same within-region cropping intensity levels as the BAU landscape (a strong 
assumption), and that a transition to (or from) intermittently cultivated annuals can be modeled as 
transition to (or from) a weighted combination of continuously cultivated annuals and continuously 
fallowed land. For example, if a region has a cropping intensity of .75 and experiences a transition of 100 
hectares from annual to perennial, that would be modeled as 75 hectares transitioning from continuously 
cultivated annual to perennial, and 25 hectares transitioning from continuously fallowed to perennial. 
Additional rules for comparing landscapes are specified with extensive comments within the file 
GHG_transition_propagation.R.  
 

Results: Supplementary tables, figures, and analysis 
This section contains additional results referenced in the main manuscript, as well as intermediate outputs 
and sensitivity analysis. 

Table SR1 -- Land use and production statistics with and without SGMA  
 
Column names: 

1. #: Region number 
2. Verbatim 
3. Exist Footprint (ha): Present/No-SGMA footprint (ha) 
4. Perm Ret (ha) : Permanent retirement (ha) 
5. Perm Ret (%): Permanent retirement (%) 
6. Verbatim 
7. No-SGMA prod (ha): Future-without-SGMA average annual production (ha) 
8. BAU prod (ha): BAU average annual production (ha) 
9. SGMA prod impact (ha): SGMA production impact (ha) 
10. SGMA prod impact (%): SGMA production impact (%) 
11. BAU ave ann footprint (ha): BAU average annual footprint (ha) 
12. BAU ave ann temp fallowing (ha): BAU average annual temporary fallowing (ha) 
13. BAU ave ann temp fallowing (%): BAU average annual temporary fallowing (%) 
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R# Region 
Name 

Exist 
Foot- 
Print 
(ha) 

Perm 
ret (ha) 

Perm 
ret 
(%) 

BAU 
foot- 
print (ha) 

No- 
SGMA 
prod 
(ha) 

BAU 
prod (ha) 

SGMA prod 
impact (ha) 

SGMA 
prod 
impact 
(%) 

BAU ave 
ann 
footprint 
(ha) 

BAU ave 
ann temp 
fallowing(
ha) 

BAU ave 
ann temp 
fallowing 
(%) 

R1 Modesto 54799 0 0 54799 50778 50778 0 0 48629 6170 11.3 

R2 Turlock 99424 0 0 99424 89455 89223 232 0.3 81832 17592 17.7 

R3 Merced- 
Chowchilla-
Madera 

257930 21677 8.4 236253 219213 190396 28818 13.1 186241 50012 21.2 

R4 Delta- 
Mendota 

204551 3560 1.7 200991 153019 149061 3958 2.6 145750 55241 27.5 

R5 Westside 236023 19358 8.2 216664 172971 148205 24765 14.3 148085 68579 31.7 

R6 Kings- 
Tulare Lake 

491442 8286 1.7 483156 364493 340543 23949 6.6 327396 155760 32.2 

R7 Kaweah 139159 4864 3.5 134295 182640 170744 11896 6.5 127792 6503 4.8 

R8 Tule 160577 8516 5.3 152061 207038 191760 15278 7.4 152061 0 0 

R9 Kern 416308 18930 4.5 397378 293728 244538 49190 16.7 243462 153915 38.7 

R10 Pleasant 
Valley- 
Kettleman 
Plain 

33359 372 1.1 32987 8390 6329 2061 24.6 6329 26658 80.8 

 SJV overall 2093570 85563 4.1 2008007 1741726 1581577 160148 9.2 1467577 540430 26.9 
 
“Footprint” and “temporary fallowing” refer to physical land use footprint (eg, one hectare planted twice in 
a year has a footprint of one hectare), while “production” and “planted area” refer to gross quantities that 
include sums for multi-cropping (one hectare planted twice counts as two hectares). Production statistics 
are direct SWAP outputs, while land use statistics involve combining SWAP outputs with the initial land 
use map and land use change assumptions. As noted in “Estimating temporary fallowing” methods 
section, these assumptions result in a (slightly) negative temporary fallowing for Tule (R8), which reflects 
a cropping intensity greater than 1, and is therefore reported as zero temporary fallowing. BAU temporary 
fallowing statistics are calculated relative to the BAU footprint, not the present/no-SGMA footprint.  
 
 

Table SR2 -- SJV-wide restoration statistics by land use change scenario 
 

LUC scenario 
main driver 

Active retirement 
and restoration (ha) 

BAU retired 
in solution (ha) 

Total restored 
area (ha) 

BAU retired 
not in solution (ha) 

even 11142 7836 18978 77727 

land asset 10635 8177 18811 77387 
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land impairment 11369 7444 18813 78119 

groundwater 11096 7996 19092 77567 

surface water 9686 9024 18710 76539 

 
 
 

Table SR3 -- Nitrogen co-benefits supplemental results 
Baseline nitrate concentrations, loadings, and impact of active retirement due to strategic restoration. 
Median, lower, and upper refer to the range across the five scenarios. Zeros exist where no active 
retirement was identified as part of the restoration solution within a given region and land use change 
scenario. The Maximum Contaminant Level under California code is 10 mg/L, but it is important to be 
aware that a region-level average below that value does not imply every area within the region meets the 
standard.  

Region Baseline 

Nitrate 

Level 

(mg/L) 

BAU N 

loading (t) 

Median 

impact (t) 

Lower 

impact (t) 

Upper 

impact (t) 

1 5.35 6291.85 0.00 0.00 0.00 

2 7.14 11810.41 0.00 0.00 0.00 

3 4.50 22072.57 1.84 1.80 4.31 

4 6.61 17095.29 0.00 0.00 0.00 

5 1.99 20256.21 0.00 0.00 1.14 

6 3.55 33397.75 6.66 1.02 12.48 

7 9.18 18768.12 0.00 0.00 0.00 

8 5.69 21547.50 0.00 0.00 5.82 

9 5.11 28604.84 241.65 191.72 243.86 

10 NA 961.77 49.39 42.11 51.79 

26 



 

Soil carbon trajectories: 

 

Figure SR1 -- Modeled soil carbon trajectories for all transitions. 
The upper row is for soil carbon initialized to 100 tC/ha, and the lower for 40 tC/ha. The columns 
correspond to initial states being annual continuous, annual intermittent, and perennial. End states are 
color coded for Retirement, (restored) Grassland, and (restored) Shrubland. Post transition ag state is 
clear from the profile: Smooth is annual continuous, long-period is perennials, and short period is 
intermittent annuals. The x-axis labels are accounting years used within STSIM and do not correspond to 
any particular year. The transition is modeled at the leftmost dashed line, while the right two dashed lines 
bound the time horizon used for the analysis.  
 

Uncertainty assessment for LUC and optimization  
An in-depth spatial sensitivity analysis was beyond the scope of this study, however we did conduct 40 
additional formal optimization runs to assess the degree to which the core findings were sensitive to key 
parameters and problem formulations, as well as numerous ​ad hoc​ explorations in the process of refining 
optimizer parameters. Both are described below. 
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Parametric sensitivity explorations 
The analysis involved a one-way sensitivity assessment relative to the default values presented in the 
main body. One-at-a-time approaches are less preferred over designs that more thoroughly explore the 
space, but alternate designs are both more computationally intensive and a significantly heavier lift to 
parse in the spatial context. We are currently exploring future work that may examine these and other 
sensitivities in more detail as this framework is translated into an operational guidance within the SJV.  
 
To assess robustness of the spatial pattern of high priority restoration areas, our primary diagnostic was 
the frequency map for restoration (analogous to Figure 6 in main manuscript). As with all the analysis, 
each varied parameter was assessed for each of the five different downscaling scenarios.  
 

Table SR4: Parametric sensitivity explorations 
 

Parameter Reference Lower Upper 

Species specific high-quality area 
target 25000 acres 75% of reference 125% of reference 

Threshold for high quality habitat 
applied to logistic SDM output .9 .8 NA 

Threshold fraction of natural 
lands for a pixel to qualify as 
“natural” for boundary penalty 

.75 .65 .85 

Fraction of cost for securing 
BAU-retired land compared to 
unretired land under annuals 

.1 .05 
.2 
 
 

 
With the exception of the threshold for high quality habitat, the hotspots for restoration were generally 
consistent across each cluster of sensitivity runs. Reducing the threshold for high quality habitat causes a 
consolidation of the northern Coalinga Nose (R10) component and the Western Kern (R9) component into 
a single area in Region 10. 

Additional sensitivities considered for land use change and optimization 

Optimistic SGMA scenario 
The SWAP modeling included a lower-impact SGMA scenario associated with significant investments in 
new water supplies. As mentioned in the SWAP modeling section, stakeholders did not find the level of 
fallowing and retirement realistic and so we do not focus our analysis on that scenario. However, we did 
conduct some optimization runs after propagating the lower-impact SGMA scenario through our workflow, 
and these indicate that patterns for restoration remain primarily the same, except that lower retirement 
and overall higher returns in Tule (R8) cause a general (but not complete) shift in recommended 
restoration from Tule to Kern (R9).  
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Resolution of analysis 
Early runs also examined the effect of running the land use change and optimization at an alternate 
resolution of 270 meter pixels rather than 1080 meter pixels. While there were some differences 
particularly related to smaller clusters, we determined that, for the purposes of this study, overall patterns 
were not sufficiently different to merit the coding effort required to preserve the generality of the workflow 
for multiple resolutions. Moreover, the scale of analysis has an implementation interpretation related to 
the minimum size of land worth bringing under restoration, and we deemed the one kilometer scale to be 
desirable for ensuring reasonably sized restored areas, though it is not a crisply defined level and we are 
exploring future work to test different resolutions more thoroughly.  

Boundary penalty 
Early runs also explored variations in the boundary penalty. In the chosen least cost problem framing, the 
boundary penalty indicates the willingness to pay for a more tightly clustered set of natural areas. The 
boundary penalty used for this analysis ($100 per meter) was chosen after examining results produced 
across a range of values and making a subjective assessment regarding the degree of clustering and 
resulting patch sizes. A more extensive analysis could identify a boundary penalty that corresponds to key 
patch sizes, however this was beyond the scope of this study and also may constitute an exercise in false 
precision, given that this study intends to identify the approximate pallette within with lands may be 
secured for restoration, rather than exact reserve design.  
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