
10 Appendix

10.1 Joint and Mutual BDM

In classical information theory ([34, 12]) we can think of mutual entropy as the information contained
over two or more events occurring concurrently, and of joint entropy over the two communication
channels or events as the average uncertainty contained over all possible combinations of events. For
algorithmic information theory, the first concept can be understood as the “amount of information

within an object that is explained by another ” and the second concept can be interpreted as the “amount

of information contained within two or more objects”.
In contrast to classical information theory, we started by defining conditional BDM. Therefore we

think that the best way to define joint BDM is from the chain rule.

Definition 10. The joint BDM of X and Y with respect to {↵i} is defined as

JointBDM(X,Y ) = BDM(Y |X) +BDM(X).

Following the same path, we could define mutual BDM thus:

Definition 11. The mutual BDM of X and Y with respect to {↵i} is defined as

MutualBDM(X,Y ) = BDM(X)�BDM(X|Y ).

10.1.1 The Relationship Between Conditional, Joint and Mutual Information

The results shown in this section are evidence that our Def. for conditional BDM is well behaved, as it
is analogous to important properties for conditional, joint and mutual entropy.

Proposition 12. If X = Y then BDM(X|Y ) = 0.

Proof. is a direct consequence of the Def. 5.

It is important to note that BDM(X|Y ) = 0 does not imply that X = Y . However, it does imply
that Adj(X) = Adj(Y ). This is a consequence of the fact that BDM does not measure the information
encoded in the position of the subtensors.

Proposition 13. BDM(X) � BDM(X|Y ).

Proof. As we consider subsets of Adj(X), it is a direct consequence of the Def. 5.

Proposition 14. If X and Y are independent with respect to the partition {↵i}, this is equivalent to

Adj(X) \Adj(Y ) = ;, then BDM(X|Y ) = BDM(X).

Proof. It is a direct consequence of the Def. 5, given that we have it that Adj(X)�Adj(Y ) = Adj(X).

Proposition 15. MutualBDM(X,Y ) = MutualBDM(Y,X).

Proof. First, consider the equation

MutualBDM(X,Y ) =BDM(X)�BDM(X|Y )

=
X

(ri,ni)2Adj(X)

CTM(ri) + log(ni)

�
X

(ri,ni)2Adj(X)�Adj(Y )

(CTM(ri) + log(ni))

�
X

Adj(X)\Adj(Y )

f(nx
k, n

y
k).
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While on the other hand we have it that

MutualBDM(Y,X) =BDM(Y )�BDM(Y |X)

=
X

(rj ,nj)2Adj(Y )

CTM(rj) + log(nj)

�
X

(rj ,nj)2Adj(Y )�Adj(X)

(CTM(rj) + log(nj))

�
X

Adj(Y )\Adj(X)

f(ny
k, n

x
k).

Notice that in both equations we have the sum over all the pairs that are in both sets, Adj(X) and
Adj(Y ), with the difference being in the terms corresponding to the multiplicity. Now we have to
consider two cases. If nx

i = ny
i we have the equality. Otherwise, in the first equation we have terms of

the form log(nx
j )�f(nx

k, n
y
k), which, by Def. of f , is 0; analogously for the second equation. Therefore,

we have the equality.

Proposition 16. MutualBDM(X,Y ) = BDM(X) +BDM(Y )� JointBDM(X,Y ).

Proof.

MutualBDM(X,Y ) = MutualBDM(Y,X)

= BDM(Y )�BDM(Y |X)

= BDM(Y ) +BDM(X)� (BDM(Y |X) +BDM(X))

= BDM(X) +BDM(Y )� JointBDM(X,Y )

10.2 Coarseness and Relationship With Entropy

As mentioned in the previous section, the goal behind the Def. of coarse conditional BDM, BDM(X|Y ),
is to measure the amount of information contained in X not present in Y . Ideally, this is measured by
the conditional algorithmic information K(X|Y ). The Def. 5 includes the adjective coarse given that,
as we will show in this section, its behaviour is closer to Shannon’s entropy H than the algorithmic
information measure K, relying heavily on the entropy-like behaviour of BDM.

The conditional algorithmic information content function K is an incomputable function. There-
fore it represents a theoretical ideal that cannot be reached in practice. By construction, coarse

conditional BDM is an approximation to this measure. However it differs in not taking into account
two information sources: the information content shared between base blocks and the position of each
block.

As an example of the first limitation, consider the string 101010 . . . 10 and its negation 010101 . . . 01.
Intuitively, we know that both strings are algorithmically close, but for a partition strategy that di-
vides the string into substrings of size 2 with no overlapping, the Adj sets {({10}, n)} and {({01}, n)}
are disjoint. Therefore conditional BDM assigns the maximum BDM value to the shared information
content. Within this limitation, we argue that conditional BDM represents a better approximation to
K in comparison to entropy, mainly because BDM uses the CTM approximation value for each block,
rather than just its distribution, and the information content of its multiplicity, thus representing a
more accurate approximation to the overall algorithmic information content of the non-shared base
blocks.

The second limitation can become a significant factor when the size of the base blocks is small

when compared to that of the objects analysed, given that the positional information can become the
dominant factor of the information content within an object. This is an issue shared with entropy
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Figure 11: Each point represents the normalized average of the conditional BDM (BDM(X|Y )) and
conditional entropy (H(X|Y )), respectively, corresponding to 5000 pairs of strings randomly chosen
from a distribution where the expected number of 1s is the value shown on the x axis divided between
the conditional BDM or conditional entropy of the first element of the pair and an unrelated randomly
chosen binary string. All strings are of length 20. The partition strategy used for BDM is that of
sets of size 1. From this plot we can see that conditional BDM manages to capture the statistical
relationship of finite strings generated from the same distribution.

that conditional BDM inherits from the numerical challenges of CTM in BDM. However, conditional
BDM has the added benefit that it is defined for finite tensors generated from different distributions
by assuming the so-called universal distribution ([40]) (known to dominate any other approach) as the
underlying distribution between the two ‘events’.

10.2.1 Empirical Comparison with Entropy

Owing to the origins of the BDM function, the asymptotic relationship between coarse conditional
BDM and conditional entropy follows from the relationship between BDM and entropy ([49]). In this
section we will focus on empirical evidence for this relationship, along with exploring the impact of
the partition strategy for unidimensional objects. Further theoretical properties that establish the
well-behavedness of conditional BDM are set forth in the Appendix in Section 10.1.

For this numerical experiment we generated a sample of 19,000 random binary strings of length 20
that are pairwise related, coming from one of 19 biased distributions where the expected number of
1s varies from 1 to 19. For each pair we computed the conditional BDM with partitions of size 1 and
divided it by the conditional BDM of the first string with respect to a random string coming from an
uniform distribution. To both, the divisor and the dividend, we added 1 to avoid divisions by zero.
We repeated the experiment for conditional entropy. Both results where normalized by dividing the
quotients obtained by the maximum value obtained for each distribution. In the plot 11 we show the
average obtained for each biased distribution.

From the plot 11 we can see that as the underlying distribution associated with the strings is in-
creasingly biased, the expected shared information content of two related strings is higher (conditional
BDM is lower) when compared to the conditional BDM of two unrelated strings. This behaviour is
congruent with what we expect and observe for conditional entropy. That the area under the normal-
ized cube is smaller is expected, given that BDM is a finer-graded information content measure than
entropy and is not perfectly symmetric, as BDM and CTM are computational approximations to an
uncomputable function and are also inherently more sensitive to the fundamental limits of computable
random number generators.
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Figure 12: Each point represents the average of the conditional BDM from 30,000 pairs of binary
strings of size 20 randomly generated from four different distributions: uniform (ten 1s expected),
biased 3/20 (three 1s expected), biased 1/4 (five 1s expected) and biased 7/20 (seven 1s expected).
The x axis indicates the partition size used to compute the respective conditional BDM value, which
was normalized by dividing it by the partition size.

10.3 The Impact of the Partition Strategy

As shown in previous results ([49]), BDM better approximates the universal measure K(X) as the
number of elements resulting from applying the partition strategy {↵i} to X. However, this is not
the case for conditional BDM. Instead BDM(X|Y ) is a good approximation to K(X|Y ) when the
Adj(X) and Adj(Y ) share a high number of base tensors, and the probability of this occurring is lower
in inverse proportion to the number of elements of the partition. For this reason we must point out
that conditional BDM is dependent on the chosen partition strategy {↵i}.

As a simple example, consider the binary string X = 11110000 and its inverse Y = 00001111. Since
we have the CTM approximation for strings of size 8, the best BDM value for each string is found when
Adj(X) = {(11110000, 1)} and Adj(Y ) = {(00001111, 1)}. However, given that the elements of the
partitions are different, we have it that BDM(11110000|00001111) = BDM(11110000) = 25.1899,,
even when intuitively we know that, algorithmic information-wise, they should be very close. However,
conditional BDM is able to capture this with partitions of size 1 to 4 with no overlapping, assigning
a value of 0 to BDM(X|Y ).

We conjecture that there is no general strategy for finding a best partition strategy. This is an
issue shared with conditional block entropy, and just like the original BDM definition. At its worst,
conditional BDM will behave like conditional entropy when comparable, while maintaining best cases
close to the ideal of conditional algorithmic complexity. Thus the partition strategy can be considered
an hyperparameter that can be empirically optimized from the available data.

We performed a numerical experiment to observe this behaviour by generating 2 400 000 random
binary strings of size 20 with groups of 600,000 strings belonging to one of four different distributions:
uniform (ten 1s expected), biased 3/20 (three 1s expected), biased 1/4 (five 1s expected) and biased

7/20 (seven 1s expected). Then, we formed pairs of strings belonging to the same distribution and
computed the conditional BDM using different partition sizes from 1 to 20, for a total of 30,000 pairs
per data point, normalizing the result by dividing it by the partition size to avoid this factor being
the dominant one. In the plot 12 we show the average obtained for each data point.

In figure 12 we can observe two main behaviours. The first is that as the partition size increases so
does the conditional BDM value. This is because bigger partitions take into account more information
from the position of each bit, and we do not expect randomly generated strings to share positional
information. The drop observed after partitions of size 12 is the result of CTM values being available
up to strings of size 12, the point where the program starts to rely on BDM for the computation.
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Table 3: Accuracy for the first task

Classifier Accuracy on Test Set Accuracy on Training Set

Simple Networks

1 60.11% 98.86%
2 57.30% 98.86
5 25.84% 32.95%

Fernandes 18.54% 50.56%

Algorithmic Class. 95.50% 96.02%

Table 4: Accuracy for the second task

Classifier Rules Test Set Topology Test Set

Logistic Regression 82.35% 20.75%
NN 92.50% 32.75%

Algorithmic Class. 91.35% 72.4%

Additionally the partition strategy ignores smaller partitions than the ones stated, thereby reducing
the overall amount of information taken into account. The second is that not only is conditional BDM
able to capture the discrepancies expected from the different distributions for partition sizes where
there is no loss of statistical information (this being from size 1 to 10), but seems to improve on its
ability to do so with larger partition sizes up to 10, therefore improving upon the results presented in
Section 10.2.1.

It is important to note that an important reduction in accuracy for partitions of sizes larger than 10
was expected, given that the partition strategy used discarded substrings of smaller sizes than the ones
stated. For instance, the partition of size 3 of the string 10111 is just {101}, thus losing information.
Furthermore, for big partition sizes with respect to the string length, the statistical similarity vanishes,
given that now each substring is considered a different symbol of an alphabet. Therefore, the abrupt
change of behaviour observed beyond partitions of size 15 is expected and is the product of causation.

10.4 Experiments and models

M =

8
>>>><

>>>>:

704 ! {0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, 3572 ! {1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0},
3067 ! {1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1}, 3184 ! {1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0},
1939 ! {0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1}, 2386 ! {1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0},
2896 ! {1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0}, 205 ! {0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1},
828 ! {0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0}, 3935 ! {1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1}

9
>>>>=

>>>>;

(6)

10.5 Other result details
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Table 5: Accuracy for the third task

Model Test Set Training Set

Neural Networks

Naive 43% 100%
Convolutional 31.66% 97.66%

Boosted Trees 35% 64.33%

Algorithmic Classifiers

BDM 70% 71%
Entropy 37.66% 46.33%
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