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Additive Bayesian Network (ABN) model  

The modelling was carried out using the open source software R (1) and JAGS (2), and 

involved three consecutive steps: (i) identifying a globally optimal DAG, (iii) adjusting the 

chosen model for over-fitting, and (iii) estimating parameters. 

I. IDENTIFICATION OF THE GLOBALLY OPTIMAL MODEL 

In ABN modelling, finding the model with best goodness of fit to the available data is known 

as structure discovery. This is usually performed by selecting the model with the highest 

network score. The network score represents the marginal log likelihood of the data given the 

model (3) and it includes an implicit penalty for model complexity. The network score is 

decomposable, which means that it can be computed separately for each node, making its 

computation very efficient.  

In our study, we used the R package abn (version 1.0.2) (4) for structure discovery, which 

computes the network score using Laplace approximation at each node (5). The identification 

of the maximum a posteriori ABN (i.e. the model with the highest overall network score) was 

achieved with an order-based exact search method (6), which identifies the ABN with the 

network score equal to the best possible network score of any ABN. Given that the 

computational cost of identifying the best fitting ABN increases super-exponentially with the 

network complexity (i.e. the number of covariates – or parents – at each node), the model 

search was iterated across incremental parent limits. This means that the model selection 

procedure started from one allowed parent per node and then the parent limit was increased, 

step by step, until the highest score was achieved, and the resulting network had fewer 

parents than the maximum number allowed. That equals to finding the minimal complexity 

needed to achieve the highest possible network score. 

The model applied in this study uses a Bayesian approach for both structure discovery and 

parameter learning, and as such it relies on prior information. With respect to the model 

structure, a uniform prior distribution was chosen, assuming that all eligible network structures 

were equally plausible, to allow a fully data-driven approach. In term of parameter priors, we 

assumed weakly informative Gaussian priors with mean zero and variance 1000 for each of 

the regression parameters of the model, as well as diffuse Gamma priors (with shape and 

scale equal to 0.001) for the precision parameters in Gaussian node in the model.  

Additional knowledge about data structure, that could guide the search for the optimal model, 

was included by banning some specific arcs from being considered in the final DAG. This was 

done by providing a ban matrix (Figure 1), where rows and columns represent children and 

parents, respectively, and 1 and 0 indicates whether the arc is banned or allowed. For 

example, all the arcs going to the variable “male” (i.e. third last row) were banned (i.e. all 1s) 

under the reasonable assumption that none of the considered variable was expected to 

influence the sex of the dog, which is an inborn trait. The information encoded in the ban 

matrix was subjectively chosen by the authors to reflect their belief about data structure, which 

in turn was derived from knowledge of the study design (e.g. the ED status was recorded 

before the COI questionnaire, therefore COI-related variables could not affect it) and thorough 

reasoning (e.g. it is reasonable to assume that inborn traits cannot be affected by any 

variable).  
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Figure 1: Ban matrix used in the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. ADJUSTMENT FOR OVERFITTING 

ABN modelling is known to be prone to overfitting (7). Therefore, a parametric bootstrapping 

approach using Markov chain Monte Carlo (MCMC) simulations was used to address this 

issue, as described in Lewis and McCormick (8).  Briefly, the model chosen from the exact 

search (outcome of step ii) was used to generate 5000 bootstrap datasets of equal size to the 

original dataset. These simulations were computed using JAGS and the R package rjags 

(version 4-8). Each bootstrap dataset was then treated as if it were the original data, and a 

globally optimal DAG was identified exactly as described before (i.e. exact search with 

incremental parent limit). This bootstrapping process generated 5000 different DAGs. To 

address over-fitting, any arcs in the DAG from the original data which were not recovered in 

>50% of the bootstrap DAGs were deemed to have insufficient statistical support to be 

considered robust (3). These arcs were therefore removed, obtaining a final pruned DAG, 

equivalent to a multivariate GLM.  

 

III. PARAMETERS ESTIMATION 

The marginal posterior log odds ratio and 95% credible intervals were estimated for each 

parameter from the posterior distribution, expressed by the DAG identified at the second step. 

Being in a Bayesian statistics framework, the parameters were the maximum likelihood 

estimates (MLE) based on the joint posterior distribution. With ABN methodology, it is possible 

to evaluate the association between all variables, including the outcome and hence evaluate 

all relationships present in the data. An arc between two variables in the final ABN model is 

referred to as a “direct” relationship, whereas an “indirect” relationship is defined as two arcs 

connecting two variables with an intermediate variable. In order to estimate the parameters 

of the linked variables, a specific function (fitabn) of the R package abn was used.  

stf fnc lms qol per AS BM LR RW GS ED1 ED2 surgery rehab NSAID lameness male neutered age

stf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fnc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

per 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

GS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ED1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1

ED2 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1

surgery 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rehab 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NSAID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lameness 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

male 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

neutered 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

age 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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