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1 ADDITIONAL ANALYSIS AND PROOF
1.1 Omitted algorithms

Update rules for the momentum variant, i-CDMSGD. The compact form of i-CDMSGD is expressed
as follows:

yk+1 = Θk + µ(Θk −Θk−1) (S1a)

Θk+1 = Pτyk+1 − αg(yk+1). (S1b)

Rewriting the above equations yields:

Θk+1 = yk+1 − yk+1 + Pτyk+1 − αg(yk+1)

= yk+1 − α(g(yk+1) +
1

α
(INd −Pτ )yk+1).

(S2)

Letting S(yk+1) = g(yk+1) + 1
α(INd −Pτ ), we have

yk+1 = Θk + µ(Θk −Θk−1), (S3a)

Θk+1 = yk+1 − αS(yk+1). (S3b)

1.1.1 Proofs of main lemmas and propositions
We repeat the statements of all lemmas and theorems for completeness.

Lemma 1: Let Assumptions 1 and 2 hold. The iterates of g-CDSGD (Algorithm 3) satisfy the following
∀k ∈ N:

E[V (Θk+1)]− V (Θk) ≤ −α∇V (Θk)
TE[S(Θk)] +

γ̂

2
α2E[‖S(Θk)‖2]. (S4)

PROOF. By Assumption 1, the iterates generated by g-CDSGD satisfy:

V (Θk+1)− V (Θk) ≤ ∇V (Θk)
T (Θk+1 −Θk) +

1

2
γ̂‖Θk+1 −Θk‖2

= −α∇V (Θk)
T∇S(Θk) +

1

2
γ̂α2‖∇S(xk)‖2.

(S5)

Taking expectations on both sides, we can obtain

E[V (Θk+1)− V (Θk)] ≤ E[−α∇V (Θk)
T∇S(Θk) +

1

2
γ̂α2‖∇S(Θk)‖2]. (S6)

While V (Θk) is deterministic, V (Θk+1) can be considered to be stochastic due to the random sampling
aspect. Therefore, we have

E[V (Θk+1)]− V (Θk) ≤ −α∇V (Θk)
TE[∇S(Θk)] +

1

2
γ̂α2E[‖∇S(Θk)‖2], (S7)
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which completes the proof.

Lemma 2: Let Assumptions 1, 2, and 3 hold. The iterates of i-CDSGD (Algorithm 1) satisfy the following
inequality ∀k ∈ N:

E[V (Θk+1)]− V (Θk) ≤ −(r1 −
γ̂

2
αBm)α‖∇V (Θk)‖2 +

γ̂

2
α2B. (S8)

PROOF. Recalling Lemma 1 and using Assumption 2 and Remark 1, we have

E[V (Θk+1)]− V (Θk) ≤ −r1α‖∇V (Θk)‖2 +
γ̂

2
α2E[‖∇S(Θk)‖2] ≤ −r1α‖∇V (Θk)‖2

+
γ̂

2
α2(B +Bm‖∇V (Θk)‖2) = −(r1 −

γ̂

2
αBm)α‖∇V (Θk)‖2 +

γ̂

2
α2B

(S9)

which completes the proof.

Proposition 1: Let Assumptions 1, 2, 4 hold. The iterates of g-CDSGD (Algorithm 3) satisfy the following
inequality ∀k ∈ N, when α satisfies Eq. 15,

E[‖θjk − sk‖] ≤
ωα
√
B +BmG2

1− λ̂2

, (S10)

where sk = 1
N

∑N
j=1 θ

j
k, λ̂2 is the second-largest eigenvalue of the matrix Q = (1− ω)(Π⊗ Id) + ωINd.

PROOF. Rewriting the expression 6 in another form yields Θk+1 = QΘk − ωαg(Θk). Recursively
applying the new form of Eq. 6 results in the following expression

Θk = −ωα
k−1∑
o=0

Qk−1−og(Θk) (S11)

which follows from that the initial value of Θk is set 0. Let sk = [sk; sk; ...; sk] ∈ RNd such that
sk = 1

Nd(1Nd1
T
Nd)Θk. Therefore, we have

‖θjk − sk‖ ≤ ‖Θk − sk‖ = ‖Θk −
1

Nd
(1Nd1

T
Nd)Θk‖

= ‖ − ωα
k−1∑
o=0

Qk−1−og(Θo) + ωα
k−1∑
o=0

1

Nd
(1Nd1

T
NdQ

k−1−o)g(Θo)‖

= ‖ − ωα
k−1∑
o=0

Qk−1−og(Θo) + ωα
k−1∑
o=0

1

Nd
(1Nd1

T
Nd)g(Θk)‖

= ωα‖
k−1∑
o=0

(Qk−1−o − 1

Nd
1Nd1

T
Nd)g(Θo)‖

≤ ωα
k−1∑
o=0

‖Qk−1−o − 1

Nd
1Nd1

T
Nd‖‖g(Θo)‖ = ωα

k−1∑
o=0

λ̂k−1−o
2 ‖g(Θo)‖,

(S12)

2



Supplementary Material

where the third equality follows from that 1
Nd1Nd1

T
NdQ = 1

Nd1Nd1
T
Nd, the second inequality is obtained

by using Cauchy-Schwartz inequality, λ̂2 < 1.

Therefore, the following relationships can be obtained:

E[‖θjk − sk‖] ≤ ωαE[
k−1∑
o=0

λ̂k−1−o
2 ‖g(Θo)‖] = ωα

k−1∑
o=0

λ̂k−1−o
2 E[‖g(Θo)‖] ≤

ωα
√
B +BmG2

1− λ̂2

, (S13)

which completes the proof.

Similarly, the consensus bound for i-CDSGD is shown as follows.

Proposition 2: Let Assumptions 1, 2, 4 hold. The iterates of i-CDSGD (Algorithm 1) satisfy the following
inequality ∀k ∈ N, when α satisfies 0 < α ≤ r1−(1−λτN )Bm

γmBm
:

E[‖θjk − sk‖] ≤
α
√
B +BmG2

1− λτ2
(S14)

where sk = 1
N

∑N
j=1 θ

j
k.

PROOF. Rewriting Eq. 5 yields Θk+1 = PτΘk − αg(Θk). Recursively applying the new form of Eq. 5
results in the following expression:

Θk = −α
k−1∑
o=0

Pτ(k−1−o)g(Θk) (S15)

which follows from the fact that that the initial value of Θk is set 0.

Let sk = [sk; sk; ...; sk] ∈ RNd such that

sk =
1

Nd
(1Nd1

T
Nd)Θk.

Therefore, we have:

‖θjk − sk‖ ≤ ‖Θk − sk‖ = ‖Θk −
1

Nd
(1Nd1

T
Nd)Θk‖

= ‖ − α
k−1∑
o=0

Pτ(k−1−o)g(Θo) + α
k−1∑
o=0

1

Nd
(1Nd1

T
NdP

τ(k−1−o))g(Θo)‖

= ‖ − α
k−1∑
o=0

Pτ(k−1−o)g(Θo) + α
k−1∑
o=0

1

Nd
(1Nd1

T
Nd)g(Θk)‖

= α‖
k−1∑
o=0

(Pτ(k−1−o) − 1

Nd
1Nd1

T
Nd)g(Θo)‖

≤ α
k−1∑
o=0

‖Pτ(k−1−o) − 1

Nd
1Nd1

T
Nd‖‖g(Θo)‖ = α

k−1∑
o=0

λ
τ(k−1−o)
2 ‖g(Θo)‖,

(S16)
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where the third equality follows from that 1
N 1N1

T
NP = 1

N 1N1
T
N , and the second inequality is obtained by

using the Cauchy-Schwartz inequality. Therefore,

E[‖θjk − sk‖] ≤ αE[
k−1∑
o=0

λ
τ(k−1−o)
2 ‖g(Θo)‖] = α

k−1∑
o=0

λ
τ(k−1−o)
2 E[‖g(Θo)‖] ≤

α
√
B +BmG2

1− λτ2
. (S17)

which completes the proof.

Define
vk = arg min

Θ∈RNd
φk(Θ).

Lemma 3: The process generated by the Eq. 27 preserves the canonical form of functions {φk(Θ)} when
φ1(Θ) = φ∗1 + Ĥ

2 ‖Θ−Θ1‖2:

φk(Θ) = φ∗k +
Ĥ

2
‖Θ−Θk‖2 (S18)

Lemma 4: If α ≤ min{r1−(1−ω)(1−λN )Bm
ωBmγm

, 1
Ĥ
}, then the sequences {vk} and {vk − yk} are defined as

follows:

vk+1 = (1−
√
Ĥα)vk +

√
Ĥαyk −

√
α

Ĥ
S(yk) (S19a)

vk − yk =
1√
Ĥα

(yk −Θk) (S19b)

The proof of both Lemmas follow from (Nesterov, 2013). We also have:

Lemma 5: Let all assumptions hold. If α ≤ min{r1−(1−ω)(1−λN )Bm
ωBmγm

, 1
Ĥ
, 1

2γ̂}, then for ∀k ∈ N, we have:

E[φk(Θ)] ≤ V (Θ) + (1−
√
Ĥα)k−1(φ1(Θ)− V (Θ)), (S20)

E[V (Θk)] ≤ E

[
φ∗k +

k−1∑
p=1

(1−
√
Ĥα)k−1−p

{
− Ĥ

2

1−
√
Ĥα√

Ĥα
‖Θp − yp‖2 + α‖∇V (yp)− S(yp)‖2

}] (S21)

The proof of this lemma follows from Lemmas 3 and 4, Lemma 1 of (Nitanda, 2014), and the expressions:

(∇V (yk),S(yk)) =
1

2
(‖∇V (yk)‖2 + ‖S(yk)‖2 − ‖∇V (yk)− S(yk)‖2),

‖S(yk)‖2 ≤ 2(‖∇V (yk)‖2 + ‖∇V (yk)− S(yk)‖2),

‖∇V (yk)‖2 ≤ 2(‖S(yk)‖2 + ‖∇V (yk)− S(yk)‖2).

The last two inequalities directly follow from the triangle inequality.
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1.2 Discussion on consensus and optimality trade-offs for various algorithms
As shown in Figure 1, we formally denote the consensus bound after sufficient iterations by d1. Observe

that the consensus (upper) bound is a function of the spectral properties of the underlying communication
topology (specifically, proportional to 1 − λ2 for g-CDSGD, or 1 − λτ2 for i-CDSGD). Let us consider
two illustrative example communication topologies: dense (λ2 = 0.01) and sparse (λ2 = 0.8). We can
observe that with even τ = 2, i-CDSGD has a much smaller consensus bound compared to that of CDSGD
for the sparse topology. However, the improvement is negligible for the dense topology. Therefore, in
practice one can achieve better consensus with higher τ for sparser topologies. For g-CDSGD, as d1 is
also a function of the parameter ω, it can be seen that with an appropriately chosen ω, one can reduce the
consensus bound significantly. However, the tuning of ω can affect the optimality as we discuss later in the
paper. Let h =

√
B +BmG2. For i-CDSGD, the smallest consensus bound is αh when τ →∞, which

leads to a large communication cost. Considering ωαh
1−λ̂2

≤ αh
1−λτ2

, we obtain the condition ω ≤ 1−λ2
2−λ2−λτ2

that guarantees g-CDSGD to have a better consensus bound than i-CDSGD.

In sparse networks, i-CDSGD performs empirically better than CDSGD in terms of optimality; here we
attempt to explain why our theory suggests this is the case. For completeness we also compare g-CDSGD
with i-CDSGD and CDSGD.

Comparisons between i-CDSGD and g-CDSGD. We provide optimality bounds (which can be
interpreted as the Euclidean distance between θ̂ and θ∗ in Figure 1. In this context, we give the upper bound
for i-CDSGD, which is

lim
k→∞

E[V (Θk)− V ∗] ≤
B(αγm + 1− λτN )

2r1(Hm + α−1(1− λτ2))
,

which demonstrates that the optimality bound is related to τ . Theorem 1 shows the optimality bound of
g-CDSGD is a function of ω. We discuss the comparison for the strongly convex case; the non-convex case
follows from the similar analysis techniques to obtain the conclusion. Suppose the following condition
holds:

B[ωαγm + (1− ω)(1− λN )]

2r1(ωHm + α−1(1− ω)(1− λ2))
≤

B[αγm + 1− λτN ]

2r1(Hm + α−1(1− λτ2))
(S22)

which leads to

ω ≥ 2Hma− bγm + (be− da)α−1

2Hm(a+ e) + (ad− be)α−1 − γm(b+ d)

where a = 1− λN , b = 1− λ2, e = 1− λτN , d = 1− λτ2 . Let

A1 = 2Hma− bγm + (be− da)α−1,

A2 = 2Hm(a+ e) + (ad− be)α−1 − γm(b+ d).

To guarantee the lower bound is positive and less than 1, the following condition should be satisfied:

A1 > 0, A2 > 0, A1 < A2. (S23)

Based on the above condition, we obtain:

c < min
{

2
2a+ e

2b+ d
,
2Hme− 2(bc− ad)α−1

dHm

}
Frontiers 5
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Figure S1: Performance of different algorithms on balanced and uniformly distributed data among agents.
(Dashed lines represent test accuracy & solid lines represent training accuracy.)

Thus the lower bound for ω is obtained for the guarantee that g-CDSGD has a better optimal bound than
i-CDSGD in strongly convex case.

Comparison between CDSGD and g-CDSGD. Given the optimality upper bound of CDSGD when
k →∞ (Jiang et al., 2017) as follows:

lim
k→∞

E[V (Θk)− V ∗] ≤
B(αγm + 1− λN )

2r1(Hm + α−1(1− λ2))
,

we have:
B[ωαγm + (1− ω)(1− λN )]

2r1(ωHm + α−1(1− ω)(1− λ2))
≤ B[αγm + 1− λN ]

2r1(Hm + α−1(1− λ2))
(S24)

After some mathematical manipulations, we can obtain the following lower bound for ω:

ω ≥ 1

2
.

Combining the lower bound for ω after comparing i-CDSGD with g-CDSGD, it can be obtained that

ω ≥ max

{
1

2
,

2Hma− bγm + (be− da)α−1

2Hm(a+ e) + (ad− be)α−1 − γm(b+ d)

}
Such a result may improve the lower bound for ω to be tighter. However, since for sparse networks,
i-CDSGD outperforms CDSGD, the lower bound for ω we have shown in the main contents is an enough
guarantee for improving the optimality.
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Figure S2: Performance of different non-momentum versions of the algorithms. (Dashed lines represent
test accuracy & solid lines represent training accuracy.)

2 ADDITIONAL EXPERIMENTAL RESULTS
In all our experiments. we consider the number of agents to be 5. We choose the following sparse agent
interaction matrix for all our experiments.

π =


0.34 0.33 0.0 0. 0.33
0.33 0.34 0.33 0.0 0.0
0.0 0.33 0.34 0.33 0.0
0.0 0.0 0.33 0.34 0.33
0.33 0.0 0.0 0.33 0.34


More results are shown in the following figures. In Figure S1, we see that fluctuations in the average
accuracy are almost negligible for the case where each agent gets balanced and uniformly distributed
dataset. Algorithm i-CDMSGD performs as good as CDMSGD. We also notice that g-CDMSGD has a
lower convergence rate but achieves slightly better test error which shows similar trend with Unbalanced
data distribution case shown in Figure 2. Figure S2 shows the performance of the non-momentum versions
of the same settings. Algorithms i-CDSGD and CDSGD perform similar to Federated Averaging whereas
g-CDSGD is slow but the generalization gap is lesser.

For all the experiments until this point, each agent is allocated data from a uniform distribution of data
(assured by shuffling of the data). However, it is possible that each agent can have non-uniformity in the
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Figure S3: Performance of g-CDMSGD algorithm with different ω values with an unbalanced and non-
uniform distribution of data (20% non uniformity).

Figure S4: Performance of g-CDMSGD algorithm with different ω values with an unbalanced and non-
uniform distribution of data (40% non uniformity).
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distribution of data they are receiving. One of the aspect of non-uniformity is when each agent gets samples
biased towards a few (not all) classes and gets very few samples of other classes. Note that this kind of
distribution is referred as non-iid data distribution in Federated Averaging (McMahan et al., 2016). For
simulating this, we allocate a portion of samples pertaining to a class to a specific agent and the other
portion will be pooled, shuffled and distributed. Figure S3-?? represents the performance of different
algorithms with different percentage of non-uniform distribution of data (percentage of data per class
allocated without any shuffling). For Figure S3, we split 20% of data pertaining to two classes to an each
agent. Thus, each agent has a bias of ≈ 30% towards a class. In such a non-uniform distribution of data,
the performance of each agent fluctuates a lot more than the other the uniform distribution of data. With
several values of ω we see that as the value of ω increases, the performance is close to CDMSGD and is
even slightly better than it. At the same time, as the percentage of non-uniformity is increased to 60%, we
see that the increasing ω deteriorates the performance. This can be corroborated with the increase in the
agent level difference in the performance and lack of consensus as well as more emphasis on local gradient
updates (ω = 0.5). Since, the algorithms have not reached stability, we could not compute the degree of
consensus among the agents.
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